Author: Mathieu Grossard
Publisher: John Wiley & Sons
ISBN: 1118572122
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data. Contents 1. Design of Integrated Flexible Structures for Micromanipulation, Mathieu Grossard, Mehdi Boukallel, Stéphane Régnier and Nicolas Chaillet. 2. Flexible Structures’ Representation and Notable Properties in Control, Mathieu Grossard, Arnaud Hubert, Stéphane Régnier and Nicolas Chaillet. 3. Structured Energy Approach for the Modeling of Flexible Structures, Nandish R. Calchand, Arnaud Hubert, Yann Le Gorrec and Hector Ramirez Estay. 4. Open-Loop Control Approaches to Compliant Micromanipulators, Yassine Haddab, Vincent Chalvet and Micky Rakotondrabe. 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers, Javier Martin Amezaga and Mathieu Grossard. 6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation, Mehdi Boukallel, Hanna Yousef, Christelle Godin and Caroline Coutier. 7. Flexures for High-Precision Manipulation Robots, Reymond Clavel, Simon Henein and Murielle Richard. 8. Modeling and Motion Control of Serial Robots with Flexible Joints, Maria Makarov and Mathieu Grossard. 9. Dynamic Modeling of Deformable Manipulators, Frédéric Boyer and Ayman Belkhiri. 10. Robust Control of Robotic Manipulators with Structural Flexibilities, Houssem Halalchi, Loïc Cuvillon, Guillaume Mercère and Edouard Laroche. About the Authors Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France. Nicolas Chaillet, FEMTO-ST, Besançon, France. Stéphane Régnier, ISIR, UPMC, Paris, France.
Flexible Robotics
Author: Mathieu Grossard
Publisher: John Wiley & Sons
ISBN: 1118572122
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data. Contents 1. Design of Integrated Flexible Structures for Micromanipulation, Mathieu Grossard, Mehdi Boukallel, Stéphane Régnier and Nicolas Chaillet. 2. Flexible Structures’ Representation and Notable Properties in Control, Mathieu Grossard, Arnaud Hubert, Stéphane Régnier and Nicolas Chaillet. 3. Structured Energy Approach for the Modeling of Flexible Structures, Nandish R. Calchand, Arnaud Hubert, Yann Le Gorrec and Hector Ramirez Estay. 4. Open-Loop Control Approaches to Compliant Micromanipulators, Yassine Haddab, Vincent Chalvet and Micky Rakotondrabe. 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers, Javier Martin Amezaga and Mathieu Grossard. 6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation, Mehdi Boukallel, Hanna Yousef, Christelle Godin and Caroline Coutier. 7. Flexures for High-Precision Manipulation Robots, Reymond Clavel, Simon Henein and Murielle Richard. 8. Modeling and Motion Control of Serial Robots with Flexible Joints, Maria Makarov and Mathieu Grossard. 9. Dynamic Modeling of Deformable Manipulators, Frédéric Boyer and Ayman Belkhiri. 10. Robust Control of Robotic Manipulators with Structural Flexibilities, Houssem Halalchi, Loïc Cuvillon, Guillaume Mercère and Edouard Laroche. About the Authors Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France. Nicolas Chaillet, FEMTO-ST, Besançon, France. Stéphane Régnier, ISIR, UPMC, Paris, France.
Publisher: John Wiley & Sons
ISBN: 1118572122
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data. Contents 1. Design of Integrated Flexible Structures for Micromanipulation, Mathieu Grossard, Mehdi Boukallel, Stéphane Régnier and Nicolas Chaillet. 2. Flexible Structures’ Representation and Notable Properties in Control, Mathieu Grossard, Arnaud Hubert, Stéphane Régnier and Nicolas Chaillet. 3. Structured Energy Approach for the Modeling of Flexible Structures, Nandish R. Calchand, Arnaud Hubert, Yann Le Gorrec and Hector Ramirez Estay. 4. Open-Loop Control Approaches to Compliant Micromanipulators, Yassine Haddab, Vincent Chalvet and Micky Rakotondrabe. 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers, Javier Martin Amezaga and Mathieu Grossard. 6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation, Mehdi Boukallel, Hanna Yousef, Christelle Godin and Caroline Coutier. 7. Flexures for High-Precision Manipulation Robots, Reymond Clavel, Simon Henein and Murielle Richard. 8. Modeling and Motion Control of Serial Robots with Flexible Joints, Maria Makarov and Mathieu Grossard. 9. Dynamic Modeling of Deformable Manipulators, Frédéric Boyer and Ayman Belkhiri. 10. Robust Control of Robotic Manipulators with Structural Flexibilities, Houssem Halalchi, Loïc Cuvillon, Guillaume Mercère and Edouard Laroche. About the Authors Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France. Nicolas Chaillet, FEMTO-ST, Besançon, France. Stéphane Régnier, ISIR, UPMC, Paris, France.
Flexible Robotics in Medicine
Author: Hongliang Ren
Publisher: Academic Press
ISBN: 0128175958
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development provides a resource of knowledge and successful prototypes regarding flexible robots in medicine. With specialists in the medical field increasingly utilizing robotics in medical procedures, it is vital to improve current knowledge regarding technologies available. This book covers the background, medical requirements, biomedical engineering principles, and new research on soft robots, including general flexible robotic systems, design specifications, design rationale, fabrication, verification experiments, actuators and sensors in flexible medical robotic systems. Presenting several projects as examples, the authors also discuss the pipeline to develop a medical robotic system, including important milestones such as involved regulations, device classifications and medical standards. Covers realistic prototypes, experimental protocols and design procedures for engineering flexible medical robotics Covers the full product development pipeline for engineering new flexible robots for medical applications, including design principles and design verifications Includes detailed information for application and development of several types of robots, including Handheld Concentric-Tube Flexible Robot for Intraocular Procedures, a Preliminary Robotic Surgery Platform with Multiple Section Tendon-Driven Mechanism, a Flexible Drill for Minimally Invasive Transoral Surgical Robotic System, Four-Tendon-Driven Flexible Manipulators, Slim Single-port Surgical Manipulator with Spring Backbones and Catheter-size Channels, and much more
Publisher: Academic Press
ISBN: 0128175958
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development provides a resource of knowledge and successful prototypes regarding flexible robots in medicine. With specialists in the medical field increasingly utilizing robotics in medical procedures, it is vital to improve current knowledge regarding technologies available. This book covers the background, medical requirements, biomedical engineering principles, and new research on soft robots, including general flexible robotic systems, design specifications, design rationale, fabrication, verification experiments, actuators and sensors in flexible medical robotic systems. Presenting several projects as examples, the authors also discuss the pipeline to develop a medical robotic system, including important milestones such as involved regulations, device classifications and medical standards. Covers realistic prototypes, experimental protocols and design procedures for engineering flexible medical robotics Covers the full product development pipeline for engineering new flexible robots for medical applications, including design principles and design verifications Includes detailed information for application and development of several types of robots, including Handheld Concentric-Tube Flexible Robot for Intraocular Procedures, a Preliminary Robotic Surgery Platform with Multiple Section Tendon-Driven Mechanism, a Flexible Drill for Minimally Invasive Transoral Surgical Robotic System, Four-Tendon-Driven Flexible Manipulators, Slim Single-port Surgical Manipulator with Spring Backbones and Catheter-size Channels, and much more
Flexible Robot Manipulators
Author: M. Osman Tokhi
Publisher: IET
ISBN: 0863414486
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
This book discusses the latest developmens in modelling, simulation and control of flexible robot manipulators. Coverage includes an overall review of previously developed methodologies, a range of modelling approaches including classical techniques, parametric and neuromodelling approaches and numerical modelling/simulation techniques.
Publisher: IET
ISBN: 0863414486
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
This book discusses the latest developmens in modelling, simulation and control of flexible robot manipulators. Coverage includes an overall review of previously developed methodologies, a range of modelling approaches including classical techniques, parametric and neuromodelling approaches and numerical modelling/simulation techniques.
Flexible Robot Dynamics and Controls
Author: Rush D. Robinett III
Publisher: Springer Science & Business Media
ISBN: 1461505399
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
This book is the result of over ten (10) years of research and development in flexible robots and structures at Sandia National Laboratories. The authors de cided to collect this wealth of knowledge into a set of viewgraphs in order to teach a graduate class in Flexible Robot Dynamics and Controls within the Mechanical En gineering Department at the University of New Mexico (UNM). These viewgraphs, encouragement from several students, and many late nights have produced a book that should provide an upper-level undergraduate and graduate textbook and a reference for experienced professionals. The content of this book spans several disciplines including structural dynam ics, system identification, optimization, and linear, digital, and nonlinear control theory which are developed from several points of view including electrical, me chanical, and aerospace engineering as well as engineering mechanics. As a result, the authors believe that this book demonstrates the value of solid applied theory when developing hardware solutions to real world problems. The reader will find many real world applications in this book and will be shown the applicability of these techniques beyond flexible structures which, in turn, shows the value of mul tidisciplinary education and teaming.
Publisher: Springer Science & Business Media
ISBN: 1461505399
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
This book is the result of over ten (10) years of research and development in flexible robots and structures at Sandia National Laboratories. The authors de cided to collect this wealth of knowledge into a set of viewgraphs in order to teach a graduate class in Flexible Robot Dynamics and Controls within the Mechanical En gineering Department at the University of New Mexico (UNM). These viewgraphs, encouragement from several students, and many late nights have produced a book that should provide an upper-level undergraduate and graduate textbook and a reference for experienced professionals. The content of this book spans several disciplines including structural dynam ics, system identification, optimization, and linear, digital, and nonlinear control theory which are developed from several points of view including electrical, me chanical, and aerospace engineering as well as engineering mechanics. As a result, the authors believe that this book demonstrates the value of solid applied theory when developing hardware solutions to real world problems. The reader will find many real world applications in this book and will be shown the applicability of these techniques beyond flexible structures which, in turn, shows the value of mul tidisciplinary education and teaming.
Cartesian Impedance Control of Redundant and Flexible-Joint Robots
Author: Christian Ott
Publisher: Springer Science & Business Media
ISBN: 3540692533
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
By the dawn of the new millennium, robotics has undergone a major transf- mation in scope and dimensions. This expansion has been brought about by the maturity of the ?eld and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and c- munities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider rangeof applications reaching across diverse research areas and scienti?c disciplines, such as: biomechanics, haptics, n- rosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an ab- dant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on thebasisoftheirsigni?canceandquality.Itisourhopethatthewiderdissemi- tion of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.
Publisher: Springer Science & Business Media
ISBN: 3540692533
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
By the dawn of the new millennium, robotics has undergone a major transf- mation in scope and dimensions. This expansion has been brought about by the maturity of the ?eld and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and c- munities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider rangeof applications reaching across diverse research areas and scienti?c disciplines, such as: biomechanics, haptics, n- rosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an ab- dant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on thebasisoftheirsigni?canceandquality.Itisourhopethatthewiderdissemi- tion of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.
Flexible Robotics in Medicine
Author: Hongliang Ren
Publisher: Academic Press
ISBN: 0128165561
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development provides a resource of knowledge and successful prototypes regarding flexible robots in medicine. With specialists in the medical field increasingly utilizing robotics in medical procedures, it is vital to improve current knowledge regarding technologies available. This book covers the background, medical requirements, biomedical engineering principles, and new research on soft robots, including general flexible robotic systems, design specifications, design rationale, fabrication, verification experiments, actuators and sensors in flexible medical robotic systems. Presenting several projects as examples, the authors also discuss the pipeline to develop a medical robotic system, including important milestones such as involved regulations, device classifications and medical standards. - Covers realistic prototypes, experimental protocols and design procedures for engineering flexible medical robotics - Covers the full product development pipeline for engineering new flexible robots for medical applications, including design principles and design verifications - Includes detailed information for application and development of several types of robots, including Handheld Concentric-Tube Flexible Robot for Intraocular Procedures, a Preliminary Robotic Surgery Platform with Multiple Section Tendon-Driven Mechanism, a Flexible Drill for Minimally Invasive Transoral Surgical Robotic System, Four-Tendon-Driven Flexible Manipulators, Slim Single-port Surgical Manipulator with Spring Backbones and Catheter-size Channels, and much more
Publisher: Academic Press
ISBN: 0128165561
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development provides a resource of knowledge and successful prototypes regarding flexible robots in medicine. With specialists in the medical field increasingly utilizing robotics in medical procedures, it is vital to improve current knowledge regarding technologies available. This book covers the background, medical requirements, biomedical engineering principles, and new research on soft robots, including general flexible robotic systems, design specifications, design rationale, fabrication, verification experiments, actuators and sensors in flexible medical robotic systems. Presenting several projects as examples, the authors also discuss the pipeline to develop a medical robotic system, including important milestones such as involved regulations, device classifications and medical standards. - Covers realistic prototypes, experimental protocols and design procedures for engineering flexible medical robotics - Covers the full product development pipeline for engineering new flexible robots for medical applications, including design principles and design verifications - Includes detailed information for application and development of several types of robots, including Handheld Concentric-Tube Flexible Robot for Intraocular Procedures, a Preliminary Robotic Surgery Platform with Multiple Section Tendon-Driven Mechanism, a Flexible Drill for Minimally Invasive Transoral Surgical Robotic System, Four-Tendon-Driven Flexible Manipulators, Slim Single-port Surgical Manipulator with Spring Backbones and Catheter-size Channels, and much more
Soft Robotics in Rehabilitation
Author: Amir Jafari
Publisher: Academic Press
ISBN: 0128185392
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. - Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions - Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs - Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book
Publisher: Academic Press
ISBN: 0128185392
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. - Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions - Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs - Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book
Advanced Studies of Flexible Robotic Manipulators
Author: Fei-Yue Wang
Publisher: World Scientific
ISBN: 9812383905
Category : Technology & Engineering
Languages : en
Pages : 457
Book Description
Flexible robotic manipulators pose various challenges in research as compared to rigid robotic manipulators, ranging from system design, structural optimization, and construction to modeling, sensing, and control. Although significant progress has been made in many aspects over the last one-and-a-half decades, many issues are not resolved yet, and simple, effective, and reliable controls of flexible manipulators still remain an open quest. Clearly, further efforts and results in this area will contribute significantly to robotics (particularly automation) as well as its application and education in general control engineering. To accelerate this process, the leading experts in this important area present in this book the state of the art in advanced studies of the design, modeling, control and applications of flexible manipulators.
Publisher: World Scientific
ISBN: 9812383905
Category : Technology & Engineering
Languages : en
Pages : 457
Book Description
Flexible robotic manipulators pose various challenges in research as compared to rigid robotic manipulators, ranging from system design, structural optimization, and construction to modeling, sensing, and control. Although significant progress has been made in many aspects over the last one-and-a-half decades, many issues are not resolved yet, and simple, effective, and reliable controls of flexible manipulators still remain an open quest. Clearly, further efforts and results in this area will contribute significantly to robotics (particularly automation) as well as its application and education in general control engineering. To accelerate this process, the leading experts in this important area present in this book the state of the art in advanced studies of the design, modeling, control and applications of flexible manipulators.
Dynamics of Rigid-Flexible Robots and Multibody Systems
Author: Paramanand Vivekanand Nandihal
Publisher: Springer Nature
ISBN: 9811627983
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book discusses the dynamic analysis of rigid-flexible robots and multibody systems with serial as well as closed-loop architecture. The book presents a formulation of dynamic model of rigid-flexible robots based on the unique approach of de-coupling of natural orthogonal complements of velocity constraints. Based on this formulation, a computationally efficient and numerically stable forward dynamics algorithms for serial-chain and closed-loop robotic systems with rigid or flexible or rigid-flexible links is presented. The proposed algorithm is shown to be a numerically efficient for forward dynamics based on the investigation methodologies built on eigen value analytics. Precision and functionality of the simulation algorithms is presented/illustrated with application on different serial and closed-loop systems (both planar and spatial types). Some of the major robotic arms used to illustrate the proposed dynamic formulation and simulation algorithms are PUMA robot, Stanford robot arm, and Canadarm. It is envisaged that the book will be useful for researchers working on the development of rigid-flexible robots for use in defense, space, atomic energy, ocean exploration, and the manufacturing of biomedical equipment.
Publisher: Springer Nature
ISBN: 9811627983
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book discusses the dynamic analysis of rigid-flexible robots and multibody systems with serial as well as closed-loop architecture. The book presents a formulation of dynamic model of rigid-flexible robots based on the unique approach of de-coupling of natural orthogonal complements of velocity constraints. Based on this formulation, a computationally efficient and numerically stable forward dynamics algorithms for serial-chain and closed-loop robotic systems with rigid or flexible or rigid-flexible links is presented. The proposed algorithm is shown to be a numerically efficient for forward dynamics based on the investigation methodologies built on eigen value analytics. Precision and functionality of the simulation algorithms is presented/illustrated with application on different serial and closed-loop systems (both planar and spatial types). Some of the major robotic arms used to illustrate the proposed dynamic formulation and simulation algorithms are PUMA robot, Stanford robot arm, and Canadarm. It is envisaged that the book will be useful for researchers working on the development of rigid-flexible robots for use in defense, space, atomic energy, ocean exploration, and the manufacturing of biomedical equipment.
Dynamics of Parallel Robots
Author: Sébastien Briot
Publisher: Springer
ISBN: 3319197886
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for crossing singularities is proposed. Lastly, the approach is extended to flexible parallel robots and the algorithms for computing their symbolic model in the most compact form are given. All theoretical developments are validated through experiments.
Publisher: Springer
ISBN: 3319197886
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for crossing singularities is proposed. Lastly, the approach is extended to flexible parallel robots and the algorithms for computing their symbolic model in the most compact form are given. All theoretical developments are validated through experiments.