Author: O. C. Zienkiewicz
Publisher: Courier Corporation
ISBN: 048631801X
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.
Finite Elements and Approximation
Author: O. C. Zienkiewicz
Publisher: Courier Corporation
ISBN: 048631801X
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.
Publisher: Courier Corporation
ISBN: 048631801X
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.
Finite Elements I
Author: Alexandre Ern
Publisher: Springer Nature
ISBN: 3030563413
Category : Mathematics
Languages : en
Pages : 323
Book Description
This book is the first volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume I is divided into 23 chapters plus two appendices on Banach and Hilbert spaces and on differential calculus. This volume focuses on the fundamental ideas regarding the construction of finite elements and their approximation properties. It addresses the all-purpose Lagrange finite elements, but also vector-valued finite elements that are crucial to approximate the divergence and the curl operators. In addition, it also presents and analyzes quasi-interpolation operators and local commuting projections. The volume starts with four chapters on functional analysis, which are packed with examples and counterexamples to familiarize the reader with the basic facts on Lebesgue integration and weak derivatives. Volume I also reviews important implementation aspects when either developing or using a finite element toolbox, including the orientation of meshes and the enumeration of the degrees of freedom.
Publisher: Springer Nature
ISBN: 3030563413
Category : Mathematics
Languages : en
Pages : 323
Book Description
This book is the first volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume I is divided into 23 chapters plus two appendices on Banach and Hilbert spaces and on differential calculus. This volume focuses on the fundamental ideas regarding the construction of finite elements and their approximation properties. It addresses the all-purpose Lagrange finite elements, but also vector-valued finite elements that are crucial to approximate the divergence and the curl operators. In addition, it also presents and analyzes quasi-interpolation operators and local commuting projections. The volume starts with four chapters on functional analysis, which are packed with examples and counterexamples to familiarize the reader with the basic facts on Lebesgue integration and weak derivatives. Volume I also reviews important implementation aspects when either developing or using a finite element toolbox, including the orientation of meshes and the enumeration of the degrees of freedom.
Finite Elements II
Author: Alexandre Ern
Publisher: Springer Nature
ISBN: 3030569233
Category : Mathematics
Languages : en
Pages : 491
Book Description
This book is the second volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume II is divided into 32 chapters plus one appendix. The first part of the volume focuses on the approximation of elliptic and mixed PDEs, beginning with fundamental results on well-posed weak formulations and their approximation by the Galerkin method. The material covered includes key results such as the BNB theorem based on inf-sup conditions, Céa's and Strang's lemmas, and the duality argument by Aubin and Nitsche. Important implementation aspects regarding quadratures, linear algebra, and assembling are also covered. The remainder of Volume II focuses on PDEs where a coercivity property is available. It investigates conforming and nonconforming approximation techniques (Galerkin, boundary penalty, Crouzeix—Raviart, discontinuous Galerkin, hybrid high-order methods). These techniques are applied to elliptic PDEs (diffusion, elasticity, the Helmholtz problem, Maxwell's equations), eigenvalue problems for elliptic PDEs, and PDEs in mixed form (Darcy and Stokes flows). Finally, the appendix addresses fundamental results on the surjectivity, bijectivity, and coercivity of linear operators in Banach spaces.
Publisher: Springer Nature
ISBN: 3030569233
Category : Mathematics
Languages : en
Pages : 491
Book Description
This book is the second volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume II is divided into 32 chapters plus one appendix. The first part of the volume focuses on the approximation of elliptic and mixed PDEs, beginning with fundamental results on well-posed weak formulations and their approximation by the Galerkin method. The material covered includes key results such as the BNB theorem based on inf-sup conditions, Céa's and Strang's lemmas, and the duality argument by Aubin and Nitsche. Important implementation aspects regarding quadratures, linear algebra, and assembling are also covered. The remainder of Volume II focuses on PDEs where a coercivity property is available. It investigates conforming and nonconforming approximation techniques (Galerkin, boundary penalty, Crouzeix—Raviart, discontinuous Galerkin, hybrid high-order methods). These techniques are applied to elliptic PDEs (diffusion, elasticity, the Helmholtz problem, Maxwell's equations), eigenvalue problems for elliptic PDEs, and PDEs in mixed form (Darcy and Stokes flows). Finally, the appendix addresses fundamental results on the surjectivity, bijectivity, and coercivity of linear operators in Banach spaces.
The Finite Element Method Set
Author: O. C. Zienkiewicz
Publisher: Elsevier
ISBN: 0080531679
Category : Technology & Engineering
Languages : en
Pages : 1863
Book Description
The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference
Publisher: Elsevier
ISBN: 0080531679
Category : Technology & Engineering
Languages : en
Pages : 1863
Book Description
The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference
Numerical Approximation of Partial Differential Equations
Author: Sören Bartels
Publisher: Springer
ISBN: 3319323547
Category : Mathematics
Languages : en
Pages : 541
Book Description
Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.
Publisher: Springer
ISBN: 3319323547
Category : Mathematics
Languages : en
Pages : 541
Book Description
Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.
The Finite Element Method for Solid and Structural Mechanics
Author: O. C. Zienkiewicz
Publisher: Elsevier
ISBN: 0080455581
Category : Technology & Engineering
Languages : en
Pages : 653
Book Description
This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. - Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor - New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling
Publisher: Elsevier
ISBN: 0080455581
Category : Technology & Engineering
Languages : en
Pages : 653
Book Description
This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. - Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor - New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling
Theory and Practice of Finite Elements
Author: Alexandre Ern
Publisher: Springer Science & Business Media
ISBN: 1475743556
Category : Mathematics
Languages : en
Pages : 531
Book Description
This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.
Publisher: Springer Science & Business Media
ISBN: 1475743556
Category : Mathematics
Languages : en
Pages : 531
Book Description
This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.
Finite Elements III
Author: Alexandre Ern
Publisher: Springer Nature
ISBN: 3030573486
Category : Mathematics
Languages : en
Pages : 417
Book Description
This book is the third volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume III is divided into 28 chapters. The first eight chapters focus on the symmetric positive systems of first-order PDEs called Friedrichs' systems. This part of the book presents a comprehensive and unified treatment of various stabilization techniques from the existing literature. It discusses applications to advection and advection-diffusion equations and various PDEs written in mixed form such as Darcy and Stokes flows and Maxwell's equations. The remainder of Volume III addresses time-dependent problems: parabolic equations (such as the heat equation), evolution equations without coercivity (Stokes flows, Friedrichs' systems), and nonlinear hyperbolic equations (scalar conservation equations, hyperbolic systems). It offers a fresh perspective on the analysis of well-known time-stepping methods. The last five chapters discuss the approximation of hyperbolic equations with finite elements. Here again a new perspective is proposed. These chapters should convince the reader that finite elements offer a good alternative to finite volumes to solve nonlinear conservation equations.
Publisher: Springer Nature
ISBN: 3030573486
Category : Mathematics
Languages : en
Pages : 417
Book Description
This book is the third volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume III is divided into 28 chapters. The first eight chapters focus on the symmetric positive systems of first-order PDEs called Friedrichs' systems. This part of the book presents a comprehensive and unified treatment of various stabilization techniques from the existing literature. It discusses applications to advection and advection-diffusion equations and various PDEs written in mixed form such as Darcy and Stokes flows and Maxwell's equations. The remainder of Volume III addresses time-dependent problems: parabolic equations (such as the heat equation), evolution equations without coercivity (Stokes flows, Friedrichs' systems), and nonlinear hyperbolic equations (scalar conservation equations, hyperbolic systems). It offers a fresh perspective on the analysis of well-known time-stepping methods. The last five chapters discuss the approximation of hyperbolic equations with finite elements. Here again a new perspective is proposed. These chapters should convince the reader that finite elements offer a good alternative to finite volumes to solve nonlinear conservation equations.
Numerical Approximation Methods for Elliptic Boundary Value Problems
Author: Olaf Steinbach
Publisher: Springer Science & Business Media
ISBN: 0387688056
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.
Publisher: Springer Science & Business Media
ISBN: 0387688056
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations
Author: A. K. Aziz
Publisher: Academic Press
ISBN: 1483267989
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.
Publisher: Academic Press
ISBN: 1483267989
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.