Finite Element Theory and Practical Analysis with Open Source Codes

Finite Element Theory and Practical Analysis with Open Source Codes PDF Author: Anthony Pickett
Publisher:
ISBN: 9789798386473
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Finite Element Theory and Practical Analysis with Open Source Codes

Finite Element Theory and Practical Analysis with Open Source Codes PDF Author: Anthony Pickett
Publisher:
ISBN: 9789798386473
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Finite Element Theory and Its Application with Open-source Codes

Finite Element Theory and Its Application with Open-source Codes PDF Author: Anthony Pickett
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Get Book Here

Book Description
This book combines essential finite element (FE) theory with a set of twelve tutorials using relatively easy-to-use open source CAD, FE and numerical analysis codes so a student can undertake practical analysis and self-study. The theory covers fundamentals of the finite element method. Formulation of element stiffness for one dimensional bar and beam, two dimensional and three dimensional continuum elements, plate and shell elements are derived based on direct, energy and variational methods. Linear, nonlinear and transient dynamic solution methods are covered for both mechanical and field analysis problems with a focus on heat transfer. Other important theoretical topics covered include element integration, element assembly, loads, boundary conditions, contact and a chapter devoted to material laws on elasticity, hyperelasticity and plasticity.The second half of this book presents one chapter on using the tutorials containing information on installing the codes (on Windows) and getting started, and general hints on meshing, modelling and analysis. This is then followed by the tutorials and exercises which cover linear, nonlinear and dynamic mechanical analysis, steady state and transient heat analysis, field analysis, fatigue, buckling and frequency analysis, and lastly a hydraulic pipe network analysis. In each tutorial I have linked theory with application and included exercises for further self-study. For these tutorials open source codes FreeCAD, CalculiX and FreeMAT are used. CalculiX is a comprehensive FE package covering linear, nonlinear, mechanical, fluid and thermal analysis. One particular benefit is its format and structure, which is based on Abaqus and therefore knowledge gained is relevant to a leading commercial code. FreeCAD is primarily a powerful CAD modelling code, that includes good finite element meshing and modelling capabilities and is fully integrated with CalculiX. FreeMAT is used in two tutorials for numerical analysis demonstrating algorithms for explicit finite element analysis.The primary aim of this book is to provide a unified text covering theory and practice, so a student can learn and experiment with this versatile and powerful analysis method. It should be of interest to both finite element courses and for student self-study.Anthony Pickett undertook postgraduate research in composites analysis at the University of Surrey and RAE Farnborough, followed by nearly twenty-five years industrial work as scientific director with ESI GmbH developing and applying FE codes for crash, impact, process and mechanical simulation of metal and composite structures. From 2002 he was a professor at Cranfield University and since 2007 has continued research and teaching of advanced composites and analysis at IFB (Institute of Aircraft Design) at the University of Stuttgart, Germany.

Finite element theory and its application with open source codes

Finite element theory and its application with open source codes PDF Author: Anthony Pickett
Publisher: Anthony Pickett
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 366

Get Book Here

Book Description
This book combines essential finite element (FE) theory with a set of fourteen tutorials using relatively easy-to-use open source CAD, FE and other numerical analysis codes so a student can undertake practical analysis and self-study. The theory covers fundamentals of the finite element method. Formulation of element stiffness for one dimensional bar and beam, two dimensional and three dimensional continuum elements, plate and shell elements are derived based on energy and variational methods. Linear, nonlinear and transient dynamic solution methods are covered for both mechanical and field analysis problems with a focus on heat transfer. Other important theoretical topics covered include element integration, element assembly, loads, boundary conditions, contact and a chapter devoted to material laws on elasticity, hyperelasticity and plasticity. A brief introduction to Computational Fluid Dynamics (CFD) is also included. The second half of this book presents a chapter on using tutorials containing information on code installation (on Windows) and getting started, and general hints on meshing, modelling and analysis. This is then followed by tutorials and exercises that cover linear, nonlinear and dynamic mechanical analysis, steady state and transient heat analysis, field analysis, fatigue, buckling and frequency analysis, a hydraulic pipe network analysis, and lastly two tutorials on CFD simulation. In each case theory is linked with application and exercises are included for further self-study. For these tutorials open source codes FreeCAD, CalculiX, FreeMAT and OpenFOAM are used. CalculiX is a comprehensive FE package covering linear, nonlinear and transient analysis. One particular benefit is that its format and structure is based on Abaqus, so knowledge gained is relevant to a leading commercial code. FreeCAD is primarily a powerful CAD modelling code, that includes good finite element meshing and modelling capabilities and is fully integrated with CalculiX. FreeMAT is used in three tutorials for numerical analysis demonstrating algorithms for explicit finite element and CFD analysis. And OpenFOAM is used for other CFD flow simulations. The primary aim of this book is to provide a unified text covering theory and practice, so a student can learn and experiment with these versatile and powerful analysis methods. It should be of value to both finite element courses and for student self-study.

The Finite Element Method

The Finite Element Method PDF Author: Patrick Ciarlet
Publisher: John Wiley & Sons
ISBN: 1786307685
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
The finite element method, which emerged in the 1950s to deal with structural mechanics problems, has since undergone continuous development. Using partial differential equation models, it is now present in such fields of application as mechanics, physics, chemistry, economics, finance and biology. It is also used in most scientific computing software, and many engineers become adept at using it in their modeling and numerical simulation activities. This book presents all the essential elements of the finite element method in a progressive and didactic way: the theoretical foundations, practical considerations of implementation, algorithms, as well as numerical illustrations created in MATLAB. Original exercises with detailed answers are provided at the end of each chapter.

Fundamentals of Finite Element Analysis

Fundamentals of Finite Element Analysis PDF Author: Ioannis Koutromanos
Publisher: John Wiley & Sons
ISBN: 1119260086
Category : Technology & Engineering
Languages : en
Pages : 724

Get Book Here

Book Description
An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.

Programming the Finite Element Method

Programming the Finite Element Method PDF Author: I. M. Smith
Publisher: John Wiley & Sons
ISBN: 0470011246
Category : Technology & Engineering
Languages : en
Pages : 649

Get Book Here

Book Description
This title demonstrates how to develop computer programmes which solve specific engineering problems using the finite element method. It enables students, scientists and engineers to assemble their own computer programmes to produce numerical results to solve these problems. The first three editions of Programming the Finite Element Method established themselves as an authority in this area. This fully revised 4th edition includes completely rewritten programmes with a unique description and list of parallel versions of programmes in Fortran 90. The Fortran programmes and subroutines described in the text will be made available on the Internet via anonymous ftp, further adding to the value of this title.

Finite Element Analysis

Finite Element Analysis PDF Author: M. J. Fagan
Publisher: Halsted Press
ISBN: 9780470218174
Category : Finite element method
Languages : en
Pages : 315

Get Book Here

Book Description


Programming the Finite Element Method

Programming the Finite Element Method PDF Author: I. M. Smith
Publisher: John Wiley & Sons
ISBN: 9780471100980
Category : Civil engineering
Languages : en
Pages : 351

Get Book Here

Book Description


A First Course in Finite Elements

A First Course in Finite Elements PDF Author: Jacob Fish
Publisher: Wiley-Blackwell
ISBN: 9780470035801
Category : Computers
Languages : en
Pages : 319

Get Book Here

Book Description
Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations. Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements: Adopts a generic approach to the subject, and is not application specific In conjunction with a web-based chapter, it integrates code development, theory, and application in one book Provides an accompanying Web site that includes ABAQUS Student Edition, Matlab data and programs, and instructor resources Contains a comprehensive set of homework problems at the end of each chapter Produces a practical, meaningful course for both lecturers, planning a finite element module, and for students using the text in private study. Accompanied by a book companion website housing supplementary material that can be found at http://www.wileyeurope.com/college/Fish A First Course in Finite Elements is the ideal practical introductory course for junior and senior undergraduate students from a variety of science and engineering disciplines. The accompanying advanced topics at the end of each chapter also make it suitable for courses at graduate level, as well as for practitioners who need to attain or refresh their knowledge of finite elements through private study.

Finite Element Method

Finite Element Method PDF Author: Surendra Kumar
Publisher:
ISBN: 9789380012315
Category : Finite element method
Languages : en
Pages : 362

Get Book Here

Book Description