Author: Carl T. F. Ross
Publisher: Elsevier
ISBN: 0857099833
Category : Technology & Engineering
Languages : en
Pages : 637
Book Description
Bridging the gap between theoretical texts and the massive and expensive software packages, this handbook covers finite element programming in a wide range of problems in mechanical, civil, aeronautical and electrical engineering. Comprehensive, it ranges from the static analysis of two- and three-dimensional structures to stress analysis of thick slabs on elastic foundations, and from two- and three- dimensional vibration analysis problems to two-dimensional field problems including heat transfer and acoustic vibrations.The 24 printouts of powerful and valuable engineering computer programs, written in QUICK BASIC, are introduced by a preliminary chapter giving useful hints and formulae intended for structural design. The programs are capable of analysing problems in engineering design and manufacture, with text fully describing how to use the computer programs for their particular problems or tasks. The finite element method is used in all the programs, and the problems for analysis can be of quite complex design and shape and with complex boundary conditions. - Covers finite element programming in a wide range of problems in mechanical, civil, aeronautical and electrical engineering - Ranges from the static analysis of two- and three-dimensional structures to stress analysis of thick slabs on elastic foundations
Finite Element Programs in Structural Engineering and Continuum Mechanics
Author: Carl T. F. Ross
Publisher: Elsevier
ISBN: 0857099833
Category : Technology & Engineering
Languages : en
Pages : 637
Book Description
Bridging the gap between theoretical texts and the massive and expensive software packages, this handbook covers finite element programming in a wide range of problems in mechanical, civil, aeronautical and electrical engineering. Comprehensive, it ranges from the static analysis of two- and three-dimensional structures to stress analysis of thick slabs on elastic foundations, and from two- and three- dimensional vibration analysis problems to two-dimensional field problems including heat transfer and acoustic vibrations.The 24 printouts of powerful and valuable engineering computer programs, written in QUICK BASIC, are introduced by a preliminary chapter giving useful hints and formulae intended for structural design. The programs are capable of analysing problems in engineering design and manufacture, with text fully describing how to use the computer programs for their particular problems or tasks. The finite element method is used in all the programs, and the problems for analysis can be of quite complex design and shape and with complex boundary conditions. - Covers finite element programming in a wide range of problems in mechanical, civil, aeronautical and electrical engineering - Ranges from the static analysis of two- and three-dimensional structures to stress analysis of thick slabs on elastic foundations
Publisher: Elsevier
ISBN: 0857099833
Category : Technology & Engineering
Languages : en
Pages : 637
Book Description
Bridging the gap between theoretical texts and the massive and expensive software packages, this handbook covers finite element programming in a wide range of problems in mechanical, civil, aeronautical and electrical engineering. Comprehensive, it ranges from the static analysis of two- and three-dimensional structures to stress analysis of thick slabs on elastic foundations, and from two- and three- dimensional vibration analysis problems to two-dimensional field problems including heat transfer and acoustic vibrations.The 24 printouts of powerful and valuable engineering computer programs, written in QUICK BASIC, are introduced by a preliminary chapter giving useful hints and formulae intended for structural design. The programs are capable of analysing problems in engineering design and manufacture, with text fully describing how to use the computer programs for their particular problems or tasks. The finite element method is used in all the programs, and the problems for analysis can be of quite complex design and shape and with complex boundary conditions. - Covers finite element programming in a wide range of problems in mechanical, civil, aeronautical and electrical engineering - Ranges from the static analysis of two- and three-dimensional structures to stress analysis of thick slabs on elastic foundations
Practical Finite Element Analysis
Author: Nitin S. Gokhale
Publisher: FINITE TO INFINITE
ISBN: 8190619500
Category : Engineering
Languages : en
Pages : 27
Book Description
Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.
Publisher: FINITE TO INFINITE
ISBN: 8190619500
Category : Engineering
Languages : en
Pages : 27
Book Description
Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.
Nonlinear Continuum Mechanics for Finite Element Analysis
Author: Javier Bonet
Publisher: Cambridge University Press
ISBN: 9780521572729
Category : Mathematics
Languages : en
Pages : 272
Book Description
A unified treatment of nonlinear continuum analysis and finite element techniques.
Publisher: Cambridge University Press
ISBN: 9780521572729
Category : Mathematics
Languages : en
Pages : 272
Book Description
A unified treatment of nonlinear continuum analysis and finite element techniques.
The Finite Element Method for Solid and Structural Mechanics
Author: O. C. Zienkiewicz
Publisher: Elsevier
ISBN: 0080455581
Category : Technology & Engineering
Languages : en
Pages : 653
Book Description
This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. - Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor - New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling
Publisher: Elsevier
ISBN: 0080455581
Category : Technology & Engineering
Languages : en
Pages : 653
Book Description
This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. - Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor - New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling
Nonlinear Finite Elements for Continua and Structures
Author: Ted Belytschko
Publisher: John Wiley & Sons
ISBN: 1118632702
Category : Science
Languages : en
Pages : 834
Book Description
Nonlinear Finite Elements for Continua and Structures p>Nonlinear Finite Elements for Continua and Structures This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended Finite Element Method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation- density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems. Key features: Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis Covers many of the material laws used in today’s software and research Introduces advanced topics in nonlinear finite element modelling of continua Introduction of multiresolution continuum theory and XFEM Accompanied by a website hosting a solution manual and MATLAB® and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must-have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners.
Publisher: John Wiley & Sons
ISBN: 1118632702
Category : Science
Languages : en
Pages : 834
Book Description
Nonlinear Finite Elements for Continua and Structures p>Nonlinear Finite Elements for Continua and Structures This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended Finite Element Method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation- density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems. Key features: Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis Covers many of the material laws used in today’s software and research Introduces advanced topics in nonlinear finite element modelling of continua Introduction of multiresolution continuum theory and XFEM Accompanied by a website hosting a solution manual and MATLAB® and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must-have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners.
The Finite Element Method in Engineering
Author: Singiresu S. Rao
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 680
Book Description
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 680
Book Description
Finite Element Multidisciplinary Analysis
Author: Kajal K. Gupta
Publisher: AIAA
ISBN: 9781600860539
Category : Finite element method
Languages : en
Pages : 458
Book Description
Annotation This book fills a gap within the finite element literature by addressing the challenges and developments in multidiscipli-nary analysis. Current developments include disciplines of structural mechanics, heat transfer, fluid mechanics, controls engineering and propulsion technology, and their interaction as encountered in many practical problems in aeronautical, aerospace, and mechanical engineering, among others. These topics are reflected in the 15 chapter titles of the book. Numerical problems are provided to illustrate the applicability of the techniques. Exercises may be solved either manually or by using suitable computer software. A version of the multidisciplinary analysis program STARS is available from the author. As a textbook, the book is useful at the senior undergraduate or graduate level. The practicing engineer will find it invaluable for solving full-scale practical problems.
Publisher: AIAA
ISBN: 9781600860539
Category : Finite element method
Languages : en
Pages : 458
Book Description
Annotation This book fills a gap within the finite element literature by addressing the challenges and developments in multidiscipli-nary analysis. Current developments include disciplines of structural mechanics, heat transfer, fluid mechanics, controls engineering and propulsion technology, and their interaction as encountered in many practical problems in aeronautical, aerospace, and mechanical engineering, among others. These topics are reflected in the 15 chapter titles of the book. Numerical problems are provided to illustrate the applicability of the techniques. Exercises may be solved either manually or by using suitable computer software. A version of the multidisciplinary analysis program STARS is available from the author. As a textbook, the book is useful at the senior undergraduate or graduate level. The practicing engineer will find it invaluable for solving full-scale practical problems.
Introduction to Finite Element Analysis and Design
Author: Nam-Ho Kim
Publisher: John Wiley & Sons
ISBN: 1119078733
Category : Technology & Engineering
Languages : en
Pages : 1074
Book Description
Introduces the basic concepts of FEM in an easy-to-use format so that students and professionals can use the method efficiently and interpret results properly Finite element method (FEM) is a powerful tool for solving engineering problems both in solid structural mechanics and fluid mechanics. This book presents all of the theoretical aspects of FEM that students of engineering will need. It eliminates overlong math equations in favour of basic concepts, and reviews of the mathematics and mechanics of materials in order to illustrate the concepts of FEM. It introduces these concepts by including examples using six different commercial programs online. The all-new, second edition of Introduction to Finite Element Analysis and Design provides many more exercise problems than the first edition. It includes a significant amount of material in modelling issues by using several practical examples from engineering applications. The book features new coverage of buckling of beams and frames and extends heat transfer analyses from 1D (in the previous edition) to 2D. It also covers 3D solid element and its application, as well as 2D. Additionally, readers will find an increase in coverage of finite element analysis of dynamic problems. There is also a companion website with examples that are concurrent with the most recent version of the commercial programs. Offers elaborate explanations of basic finite element procedures Delivers clear explanations of the capabilities and limitations of finite element analysis Includes application examples and tutorials for commercial finite element software, such as MATLAB, ANSYS, ABAQUS and NASTRAN Provides numerous examples and exercise problems Comes with a complete solution manual and results of several engineering design projects Introduction to Finite Element Analysis and Design, 2nd Edition is an excellent text for junior and senior level undergraduate students and beginning graduate students in mechanical, civil, aerospace, biomedical engineering, industrial engineering and engineering mechanics.
Publisher: John Wiley & Sons
ISBN: 1119078733
Category : Technology & Engineering
Languages : en
Pages : 1074
Book Description
Introduces the basic concepts of FEM in an easy-to-use format so that students and professionals can use the method efficiently and interpret results properly Finite element method (FEM) is a powerful tool for solving engineering problems both in solid structural mechanics and fluid mechanics. This book presents all of the theoretical aspects of FEM that students of engineering will need. It eliminates overlong math equations in favour of basic concepts, and reviews of the mathematics and mechanics of materials in order to illustrate the concepts of FEM. It introduces these concepts by including examples using six different commercial programs online. The all-new, second edition of Introduction to Finite Element Analysis and Design provides many more exercise problems than the first edition. It includes a significant amount of material in modelling issues by using several practical examples from engineering applications. The book features new coverage of buckling of beams and frames and extends heat transfer analyses from 1D (in the previous edition) to 2D. It also covers 3D solid element and its application, as well as 2D. Additionally, readers will find an increase in coverage of finite element analysis of dynamic problems. There is also a companion website with examples that are concurrent with the most recent version of the commercial programs. Offers elaborate explanations of basic finite element procedures Delivers clear explanations of the capabilities and limitations of finite element analysis Includes application examples and tutorials for commercial finite element software, such as MATLAB, ANSYS, ABAQUS and NASTRAN Provides numerous examples and exercise problems Comes with a complete solution manual and results of several engineering design projects Introduction to Finite Element Analysis and Design, 2nd Edition is an excellent text for junior and senior level undergraduate students and beginning graduate students in mechanical, civil, aerospace, biomedical engineering, industrial engineering and engineering mechanics.
Energy and Finite Element Methods in Structural Mechanics
Author: Irving Herman Shames
Publisher: New Age International
ISBN: 9788122407495
Category : Calculus of variations
Languages : en
Pages : 790
Book Description
This Book Is The Outcome Of Material Used In Senior And Graduate Courses For Students In Civil, Mechanical And Aeronautical Engineering. To Meet The Needs Of This Varied Audience, The Author Have Laboured To Make This Text As Flexible As Possible To Use.Consequently, The Book Is Divided Into Three Distinct Parts Of Approximately Equal Size. Part I Is Entitled Foundations Of Solid Mechanics And Variational Methods, Part Ii Is Entitled Structural Mechanics; And Part Iii Is Entitled Finite Elements.Depending On The Background Of The Students And The Aims Of The Course Selected Portions Can Be Used From Some Or All Of The Three Parts Of The Text To Form The Basis Of An Individual Course.The Purpose Of This Useful Book Is To Afford The Student A Sound Foundation In Variational Calculus And Energy Methods Before Delving Into Finite Elements. He Goal Is To Make Finite Elements More Understandable In Terms Of Fundamentals And Also To Provide The Student With The Background Needed To Extrapolate The Finite Element Method To Areas Of Study Other Than Solid Mechanics. In Addition, A Number Of Approximation Techniques Are Made Available Using The Quadratic Functional For A Boundary-Value Problem.Finally, The Authors; Aim Is To Give Students Who Go Through The Entire Text A Balanced And Connected Exposure To Certain Key Aspects Of Modern Structural And Solid Mechanics.
Publisher: New Age International
ISBN: 9788122407495
Category : Calculus of variations
Languages : en
Pages : 790
Book Description
This Book Is The Outcome Of Material Used In Senior And Graduate Courses For Students In Civil, Mechanical And Aeronautical Engineering. To Meet The Needs Of This Varied Audience, The Author Have Laboured To Make This Text As Flexible As Possible To Use.Consequently, The Book Is Divided Into Three Distinct Parts Of Approximately Equal Size. Part I Is Entitled Foundations Of Solid Mechanics And Variational Methods, Part Ii Is Entitled Structural Mechanics; And Part Iii Is Entitled Finite Elements.Depending On The Background Of The Students And The Aims Of The Course Selected Portions Can Be Used From Some Or All Of The Three Parts Of The Text To Form The Basis Of An Individual Course.The Purpose Of This Useful Book Is To Afford The Student A Sound Foundation In Variational Calculus And Energy Methods Before Delving Into Finite Elements. He Goal Is To Make Finite Elements More Understandable In Terms Of Fundamentals And Also To Provide The Student With The Background Needed To Extrapolate The Finite Element Method To Areas Of Study Other Than Solid Mechanics. In Addition, A Number Of Approximation Techniques Are Made Available Using The Quadratic Functional For A Boundary-Value Problem.Finally, The Authors; Aim Is To Give Students Who Go Through The Entire Text A Balanced And Connected Exposure To Certain Key Aspects Of Modern Structural And Solid Mechanics.
The Finite Element Method: Solid mechanics
Author: O. C. Zienkiewicz
Publisher: Butterworth-Heinemann
ISBN: 9780750650557
Category : Continuum mechanics
Languages : en
Pages : 482
Book Description
Publisher: Butterworth-Heinemann
ISBN: 9780750650557
Category : Continuum mechanics
Languages : en
Pages : 482
Book Description