Finite Element Methods in Linear Ideal Magnetohydrodynamics

Finite Element Methods in Linear Ideal Magnetohydrodynamics PDF Author: Ralf Gruber
Publisher: Springer Science & Business Media
ISBN: 3642867081
Category : Science
Languages : en
Pages : 190

Get Book Here

Book Description
For more than ten years we have been working with the ideal linear MHD equations used to study the stability of thermonuc1ear plasmas. Even though the equations are simple and the problem is mathematically well formulated, the numerical problems were much harder to solve than anticipated. Already in the one-dimensional cylindrical case, what we called "spectral pollution" appeared. We were able to eliminate it by our "ecological solution". This solution was applied to the two-dimensional axisymmetric toroidal geometry. Even though the spectrum was unpolluted the precision was not good enough. Too many mesh points were necessary to obtain the demanded precision. Our solution was what we called the "finite hybrid elements". These elements are efficient and cheap. They have also proved their power when applied to calculating equilibrium solutions and will certainly penetrate into other domains in physics and engineering. During all these years, many colleagues have contributed to the construc tion, testing and using of our stability code ERATO. We would like to thank them here. Some ofthem gave partial contributions to the book. Among them we mention Dr. Kurt Appert, Marie-Christine Festeau-Barrioz, Roberto Iacono, Marie-Alix Secretan, Sandro Semenzato, Dr. Jan Vac1avik, Laurent Villard and Peter Merkel who kindly agreed to write Chap. 6. Special thanks go to Hans Saurenmann who drew most of the figures, to Dr

Finite Element Methods in Linear Ideal Magnetohydrodynamics

Finite Element Methods in Linear Ideal Magnetohydrodynamics PDF Author: Ralf Gruber
Publisher: Springer Science & Business Media
ISBN: 3642867081
Category : Science
Languages : en
Pages : 190

Get Book Here

Book Description
For more than ten years we have been working with the ideal linear MHD equations used to study the stability of thermonuc1ear plasmas. Even though the equations are simple and the problem is mathematically well formulated, the numerical problems were much harder to solve than anticipated. Already in the one-dimensional cylindrical case, what we called "spectral pollution" appeared. We were able to eliminate it by our "ecological solution". This solution was applied to the two-dimensional axisymmetric toroidal geometry. Even though the spectrum was unpolluted the precision was not good enough. Too many mesh points were necessary to obtain the demanded precision. Our solution was what we called the "finite hybrid elements". These elements are efficient and cheap. They have also proved their power when applied to calculating equilibrium solutions and will certainly penetrate into other domains in physics and engineering. During all these years, many colleagues have contributed to the construc tion, testing and using of our stability code ERATO. We would like to thank them here. Some ofthem gave partial contributions to the book. Among them we mention Dr. Kurt Appert, Marie-Christine Festeau-Barrioz, Roberto Iacono, Marie-Alix Secretan, Sandro Semenzato, Dr. Jan Vac1avik, Laurent Villard and Peter Merkel who kindly agreed to write Chap. 6. Special thanks go to Hans Saurenmann who drew most of the figures, to Dr

Finite Element Methods in Linear Ideal Magnetohydrodynamics

Finite Element Methods in Linear Ideal Magnetohydrodynamics PDF Author: Ralf Gruber
Publisher:
ISBN: 9783642867095
Category :
Languages : en
Pages : 196

Get Book Here

Book Description


Finite Element Methods and Their Applications

Finite Element Methods and Their Applications PDF Author: Zhangxin Chen
Publisher: Springer Science & Business Media
ISBN: 3540280782
Category : Science
Languages : en
Pages : 415

Get Book Here

Book Description
Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.

Principles of Magnetohydrodynamics

Principles of Magnetohydrodynamics PDF Author: J. P. Goedbloed
Publisher: Cambridge University Press
ISBN: 9780521626071
Category : Science
Languages : en
Pages : 644

Get Book Here

Book Description
This textbook provides a modern and accessible introduction to magnetohydrodynamics (MHD). It describes the two main applications of plasma physics, laboratory research on thermo-nuclear fusion energy and plasma astrophysics of the solar system, stars and accretion disks, from the single viewpoint of MHD. This approach provides effective methods and insights for the interpretation of plasma phenomena on virtually all scales, from the laboratory to the universe. It equips the reader with the necessary tools to understand the complexities of plasma dynamics in extended magnetic structures. The classical MHD model is developed in detail without omitting steps in the derivations and problems are included at the end of each chapter. This text is ideal for senior-level undergraduate and graduate courses in plasma physics and astrophysics.

Finite Element Method

Finite Element Method PDF Author: Sinan Muftu
Publisher: Academic Press
ISBN: 0128232005
Category : Technology & Engineering
Languages : en
Pages : 542

Get Book Here

Book Description
Finite Element Method: Physics and Solution Methods aims to provide the reader a sound understanding of the physical systems and solution methods to enable effective use of the finite element method. This book focuses on one- and two-dimensional elasticity and heat transfer problems with detailed derivations of the governing equations. The connections between the classical variational techniques and the finite element method are carefully explained. Following the chapter addressing the classical variational methods, the finite element method is developed as a natural outcome of these methods where the governing partial differential equation is defined over a subsegment (element) of the solution domain. As well as being a guide to thorough and effective use of the finite element method, this book also functions as a reference on theory of elasticity, heat transfer, and mechanics of beams. Covers the detailed physics governing the physical systems and the computational methods that provide engineering solutions in one place, encouraging the reader to conduct fully informed finite element analysis Addresses the methodology for modeling heat transfer, elasticity, and structural mechanics problems Extensive worked examples are provided to help the reader to understand how to apply these methods in practice

Finite Element Methods for Maxwell's Equations

Finite Element Methods for Maxwell's Equations PDF Author: Peter Monk
Publisher: Clarendon Press
ISBN: 0191545228
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical understanding of the properties of Maxwell's equations relevant to numerical analysis. The aim of this book is to provide an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains. Suitable variational formulations are developed and justified mathematically. An error analysis of edge finite element methods that are particularly well suited to Maxwell's equations is the main focus of the book. The methods are justified for Lipschitz polyhedral domains that can cause strong singularities in the solution. The book finishes with a short introduction to inverse problems in electromagnetism.

Classical Orthogonal Polynomials of a Discrete Variable

Classical Orthogonal Polynomials of a Discrete Variable PDF Author: Arnold F. Nikiforov
Publisher: Springer Science & Business Media
ISBN: 3642747485
Category : Science
Languages : en
Pages : 388

Get Book Here

Book Description
While classical orthogonal polynomials appear as solutions to hypergeometric differential equations, those of a discrete variable emerge as solutions of difference equations of hypergeometric type on lattices. The authors present a concise introduction to this theory, presenting at the same time methods of solving a large class of difference equations. They apply the theory to various problems in scientific computing, probability, queuing theory, coding and information compression. The book is an expanded and revised version of the first edition, published in Russian (Nauka 1985). Students and scientists will find a useful textbook in numerical analysis.

Magnetohydrodynamics and Spectral Theory

Magnetohydrodynamics and Spectral Theory PDF Author: Alexander E. Lifshits
Publisher: Springer Science & Business Media
ISBN: 9400925611
Category : Science
Languages : en
Pages : 458

Get Book Here

Book Description
2 The linearized ideal MHO equations. . . . . . . . . . . . 204 3 Spectral problems corresponding to evolutionary problems . . 211 4 Stability of equilibrium configurations and the Energy Principle 215 5 Alternative forms of the plasma potential energy 220 6 Minimization of the potential energy with respect to a parallel displacement . . . . . . . . . . . . . 222 7 Classification of ideal MHO instabilities . 224 8 The linearized non-ideal MHO equations . 226 Chapter 6. Homogeneous and discretely structured plasma oscillations 229 I Introduction . . . . . . . . . . . . . . . 229 2 Alfven waves in an incompressible ideal plasma 230 3 Cold ideal plasma oscillations. . . . 233 4 Compressible hot plasma oscillations 236 5 Finite resistivity effects . . . . . . . 239 6 Propagation of waves generated by a local source 240 7 Stratified plasma oscillations . . . . . . . . . 247 8 Oscillations of a plasma slab . . . . . . . . . 254 9 Instabilities of an ideal stratified gravitating plasma 256 10 Instabilities of a resistive stratified gravitating plasma. 262 Chapter 7. MHO oscillations of a gravitating plasma slab 265 I Introduction . . . . . . . . . . . . . . . 265 2 Gravitating slab equilibrium . . . . . . . . 266 3 Oscillations of a hot compressible plasma slab 267 4 Investigation of the slab stability via the Energy Principle 270 5 On the discrete spectrum of the operator Kk . . . . . . 274 6 On the essential spectrum of the operator Kk . . . . . . 279 7 On the discrete spectrum embedded in the essential spectrum 282 8 The eigenfunction expansion formula . . . . . . . . . . 285 9 Excitation of plasma oscillations by an external power source . 288 10 The linearized equations governing resistive gravitating plasma slab oscillations . . . . . . . . . . . . . . . . . . . . . 290 II Heuristic investigation of resistive instabilities. . . . . . . . . .

Numerical Simulation of Plasmas

Numerical Simulation of Plasmas PDF Author: Y.N. Dnestrovskii
Publisher: Springer Science & Business Media
ISBN: 3642825923
Category : Science
Languages : en
Pages : 317

Get Book Here

Book Description
This book is devoted to mathematical modeling of tokamak plasma. Since the appearance in 1982 of the first edition (in Russian), a considerable amount of experimental and theoretical material on tokamak research has been accumu lated. The new-generation devices, viz. , TFTR, JET and JT-60 were put into operation. The first experiments on these units have confirmed the correctness of the basic physical concepts underlying their construction. Experiments on plasma heating with the help of neutral beams and high-frequency (HF) waves on previous generation devices made it possible to obtain high-P plasmas. The number of "medium-size" tokamaks in operation has increased. New experi mental results and advances in the theory have led to more complicated and perfected models of high-temperature plasma. Rapid progress in computer hardware and software has played an important role in the further development of mathematical modeling. While preparing the English edition of the book, we have revised the text considerably. Several new models which have undergone significant advance ment in recent years are described. A section devoted to models of RF (radio frequency) current drive has been added to Chap. 2. The reduced magneto hydrodynamic (MHD) equations for high-P plasma are now considered in detail in Chap. 3. Chapter 4 contains the latest results on anomalous thermal conductivity, diffusion coefficient and pinching. Two new sections are added to Chap. 5.

Finite Element Methods in CAD

Finite Element Methods in CAD PDF Author: Jean Claude Sabonnadiere
Publisher: Springer Science & Business Media
ISBN: 1468487396
Category : Computers
Languages : en
Pages : 194

Get Book Here

Book Description
The finite element method (FEM) has been understood, at least in principle, for more than 50 years. The integral formulation on which it is based has been known for a longer time (thanks to the work of Galerkin, Ritz, Courant and Hilbert,1.4 to mention the most important). However, the method could not be applied in a practical way since it involved the solution of a large number of linear or non-linear algebraic equations. Today it is quite common, with the aid of computers, to solve non-linear algebraic problems of several thousand equations. The necessary numerical methods and programming techniques are now an integral part of the teaching curriculum in most engineering schools. Mechanical engineers, confronted with very complicated structural problems, were the first to take advantage of advanced computational methods and high level languages (FORTRAN) to transform the mechanical models into algebraic equations (1956). In recent times (1960), the FEM has been studied by applied mathematicians and, having received rigorous treatment, has become a part of the more general study of partial differential equations, gradually replacing the finite difference method which had been considered the universal tool to solve these types of problems.