Financial Decision Making Using Computational Intelligence

Financial Decision Making Using Computational Intelligence PDF Author: Michael Doumpos
Publisher: Springer Science & Business Media
ISBN: 1461437733
Category : Business & Economics
Languages : en
Pages : 336

Get Book Here

Book Description
The increasing complexity of financial problems and the enormous volume of financial data often make it difficult to apply traditional modeling and algorithmic procedures. In this context, the field of computational intelligence provides an arsenal of particularly useful techniques. These techniques include new modeling tools for decision making under risk and uncertainty, data mining techniques for analyzing complex data bases, and powerful algorithms for complex optimization problems. Computational intelligence has also evolved rapidly over the past few years and it is now one of the most active fields in operations research and computer science. This volume presents the recent advances of the use of computation intelligence in financial decision making. The book covers all the major areas of computational intelligence and a wide range of problems in finance, such as portfolio optimization, credit risk analysis, asset valuation, financial forecasting, and trading.

Financial Decision Making Using Computational Intelligence

Financial Decision Making Using Computational Intelligence PDF Author: Michael Doumpos
Publisher: Springer Science & Business Media
ISBN: 1461437733
Category : Business & Economics
Languages : en
Pages : 336

Get Book Here

Book Description
The increasing complexity of financial problems and the enormous volume of financial data often make it difficult to apply traditional modeling and algorithmic procedures. In this context, the field of computational intelligence provides an arsenal of particularly useful techniques. These techniques include new modeling tools for decision making under risk and uncertainty, data mining techniques for analyzing complex data bases, and powerful algorithms for complex optimization problems. Computational intelligence has also evolved rapidly over the past few years and it is now one of the most active fields in operations research and computer science. This volume presents the recent advances of the use of computation intelligence in financial decision making. The book covers all the major areas of computational intelligence and a wide range of problems in finance, such as portfolio optimization, credit risk analysis, asset valuation, financial forecasting, and trading.

Lecture Notes in Computational Intelligence and Decision Making

Lecture Notes in Computational Intelligence and Decision Making PDF Author: Sergii Babichev
Publisher: Springer Nature
ISBN: 3030820149
Category : Technology & Engineering
Languages : en
Pages : 805

Get Book Here

Book Description
This book is devoted to current problems of artificial and computational intelligence including decision-making systems. Collecting, analysis, and processing information are the current directions of modern computer science. Development of new modern information and computer technologies for data analysis and processing in various fields of data mining and machine learning creates the conditions for increasing effectiveness of the information processing by both the decrease of time and the increase of accuracy of the data processing. The book contains of 54 science papers which include the results of research concerning the current directions in the fields of data mining, machine learning, and decision making. The papers are divided in terms of their topic into three sections. The first section "Analysis and Modeling of Complex Systems and Processes" contains of 26 papers, and the second section "Theoretical and Applied Aspects of Decision-Making Systems" contains of 13 papers. There are 15 papers in the third section "Computational Intelligence and Inductive Modeling". The book is focused to scientists and developers in the fields of data mining, machine learning and decision-making systems.

The Economics of Artificial Intelligence

The Economics of Artificial Intelligence PDF Author: Ajay Agrawal
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172

Get Book Here

Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.

Computational Economics

Computational Economics PDF Author: Shu-Heng Chen
Publisher: IGI Global
ISBN: 1591406498
Category : Business & Economics
Languages : en
Pages : 339

Get Book Here

Book Description
"This book identifies the economic as well as financial problems that may be solved efficiently with computational methods and explains why those problems should best be solved with computational methods"--Provided by publisher.

Artificial Intelligence in Financial Markets

Artificial Intelligence in Financial Markets PDF Author: Christian L. Dunis
Publisher: Springer
ISBN: 1137488808
Category : Business & Economics
Languages : en
Pages : 349

Get Book Here

Book Description
As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic approach which emulates certain aspects of human brain functions, and is used extensively in financial forecasting allowing for quick investment decision making. This book presents the most cutting-edge artificial intelligence (AI)/neural networking applications for markets, assets and other areas of finance. Split into four sections, the book first explores time series analysis for forecasting and trading across a range of assets, including derivatives, exchange traded funds, debt and equity instruments. This section will focus on pattern recognition, market timing models, forecasting and trading of financial time series. Section II provides insights into macro and microeconomics and how AI techniques could be used to better understand and predict economic variables. Section III focuses on corporate finance and credit analysis providing an insight into corporate structures and credit, and establishing a relationship between financial statement analysis and the influence of various financial scenarios. Section IV focuses on portfolio management, exploring applications for portfolio theory, asset allocation and optimization. This book also provides some of the latest research in the field of artificial intelligence and finance, and provides in-depth analysis and highly applicable tools and techniques for practitioners and researchers in this field.

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance PDF Author: El Bachir Boukherouaa
Publisher: International Monetary Fund
ISBN: 1589063953
Category : Business & Economics
Languages : en
Pages : 35

Get Book Here

Book Description
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.

Computational Intelligence Paradigms in Economic and Financial Decision Making

Computational Intelligence Paradigms in Economic and Financial Decision Making PDF Author: Marina Resta
Publisher: Springer
ISBN: 3319214403
Category : Technology & Engineering
Languages : en
Pages : 183

Get Book Here

Book Description
The book focuses on a set of cutting-edge research techniques, highlighting the potential of soft computing tools in the analysis of economic and financial phenomena and in providing support for the decision-making process. In the first part the textbook presents a comprehensive and self-contained introduction to the field of self-organizing maps, elastic maps and social network analysis tools and provides necessary background material on the topic, including a discussion of more recent developments in the field. In the second part the focus is on practical applications, with particular attention paid to budgeting problems, market simulations, and decision-making processes, and on how such problems can be effectively managed by developing proper methods to automatically detect certain patterns. The book offers a valuable resource for both students and practitioners with an introductory-level college math background.

Lecture Notes in Computational Intelligence and Decision Making

Lecture Notes in Computational Intelligence and Decision Making PDF Author: Volodymyr Lytvynenko
Publisher: Springer
ISBN: 3030264742
Category : Technology & Engineering
Languages : en
Pages : 729

Get Book Here

Book Description
Information and computer technologies for data analysis and processing in various fields of data mining and machine learning generates the conditions for increasing the effectiveness of information processing by making it faster and more accurate. The book includes 49 scientific papers presenting the latest research in the fields of data mining, machine learning and decision-making. Divided into three sections: “Analysis and Modeling of Complex Systems and Processes”; “Theoretical and Applied Aspects of Decision-Making Systems”; and “Computational Intelligence and Inductive Modeling”, the book is of interest to scientists and developers in the field.

COMPUTATIONAL INTELLIGENCE IN COMPLEX DECISION MAKING SYSTEMS

COMPUTATIONAL INTELLIGENCE IN COMPLEX DECISION MAKING SYSTEMS PDF Author: Ruan Da
Publisher: Springer Science & Business Media
ISBN: 9491216295
Category : Computers
Languages : en
Pages : 398

Get Book Here

Book Description
In recent years, there has been a growing interest in the need for designing intelligent systems to address complex decision systems. One of the most challenging issues for the intelligent system is to effectively handle real-world uncertainties that cannot be eliminated. These uncertainties include various types of information that are incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, deficient, and overloading. The uncertainties result in a lack of the full and precise knowledge of the decision system, including the determining and selection of evaluation criteria, alternatives, weights, assignment scores, and the final integrated decision result. Computational intelligent techniques (including fuzzy logic, neural networks, and genetic algorithms etc.), which are complimentary to the existing traditional techniques, have shown great potential to solve these demanding, real-world decision problems that exist in uncertain and unpredictable environments. These technologies have formed the foundation for intelligent systems.

Militarized Conflict Modeling Using Computational Intelligence

Militarized Conflict Modeling Using Computational Intelligence PDF Author: Tshilidzi Marwala
Publisher: Springer Science & Business Media
ISBN: 0857297902
Category : Computers
Languages : en
Pages : 268

Get Book Here

Book Description
Militarized Conflict Modeling Using Computational Intelligence examines the application of computational intelligence methods to model conflict. Traditionally, conflict has been modeled using game theory. The inherent limitation of game theory when dealing with more than three players in a game is the main motivation for the application of computational intelligence in modeling conflict. Militarized interstate disputes (MIDs) are defined as a set of interactions between, or among, states that can result in the display, threat or actual use of military force in an explicit way. These interactions can result in either peace or conflict. This book models the relationship between key variables and the risk of conflict between two countries. The variables include Allies which measures the presence or absence of military alliance, Contiguity which measures whether the countries share a common boundary or not and Major Power which measures whether either or both states are a major power. Militarized Conflict Modeling Using Computational Intelligence implements various multi-layer perception neural networks, Bayesian networks, support vector machines, neuro-fuzzy models, rough sets models, neuro-rough sets models and optimized rough sets models to create models that estimate the risk of conflict given the variables. Secondly, these models are used to study the sensitivity of each variable to conflict. Furthermore, a framework on how these models can be used to control the possibility of peace is proposed. Finally, new and emerging topics on modelling conflict are identified and further work is proposed.