Author: Russell Reed
Publisher: MIT Press
ISBN: 0262181908
Category : Computers
Languages : en
Pages : 359
Book Description
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.
Neural Smithing
Author: Russell Reed
Publisher: MIT Press
ISBN: 0262181908
Category : Computers
Languages : en
Pages : 359
Book Description
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.
Publisher: MIT Press
ISBN: 0262181908
Category : Computers
Languages : en
Pages : 359
Book Description
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.
Feedforward Neural Network Methodology
Author: Terrence L. Fine
Publisher: Springer Science & Business Media
ISBN: 0387226494
Category : Computers
Languages : en
Pages : 353
Book Description
This decade has seen an explosive growth in computational speed and memory and a rapid enrichment in our understanding of artificial neural networks. These two factors provide systems engineers and statisticians with the ability to build models of physical, economic, and information-based time series and signals. This book provides a thorough and coherent introduction to the mathematical properties of feedforward neural networks and to the intensive methodology which has enabled their highly successful application to complex problems.
Publisher: Springer Science & Business Media
ISBN: 0387226494
Category : Computers
Languages : en
Pages : 353
Book Description
This decade has seen an explosive growth in computational speed and memory and a rapid enrichment in our understanding of artificial neural networks. These two factors provide systems engineers and statisticians with the ability to build models of physical, economic, and information-based time series and signals. This book provides a thorough and coherent introduction to the mathematical properties of feedforward neural networks and to the intensive methodology which has enabled their highly successful application to complex problems.
Natural Language Processing with PyTorch
Author: Delip Rao
Publisher: O'Reilly Media
ISBN: 1491978201
Category : Computers
Languages : en
Pages : 256
Book Description
Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems
Publisher: O'Reilly Media
ISBN: 1491978201
Category : Computers
Languages : en
Pages : 256
Book Description
Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems
Advances in Neural Networks - ISNN 2007
Author: Derong Liu
Publisher: Springer
ISBN: 3540723935
Category : Computers
Languages : en
Pages : 1346
Book Description
This book is part of a three volume set that constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. Coverage includes neural networks for control applications, robotics, data mining and feature extraction, chaos and synchronization, support vector machines, fault diagnosis/detection, image/video processing, and applications of neural networks.
Publisher: Springer
ISBN: 3540723935
Category : Computers
Languages : en
Pages : 1346
Book Description
This book is part of a three volume set that constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. Coverage includes neural networks for control applications, robotics, data mining and feature extraction, chaos and synchronization, support vector machines, fault diagnosis/detection, image/video processing, and applications of neural networks.
Computational Mechanics with Neural Networks
Author: Genki Yagawa
Publisher: Springer Nature
ISBN: 3030661113
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
This book shows how neural networks are applied to computational mechanics. Part I presents the fundamentals of neural networks and other machine learning method in computational mechanics. Part II highlights the applications of neural networks to a variety of problems of computational mechanics. The final chapter gives perspectives to the applications of the deep learning to computational mechanics.
Publisher: Springer Nature
ISBN: 3030661113
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
This book shows how neural networks are applied to computational mechanics. Part I presents the fundamentals of neural networks and other machine learning method in computational mechanics. Part II highlights the applications of neural networks to a variety of problems of computational mechanics. The final chapter gives perspectives to the applications of the deep learning to computational mechanics.
Machine Learning in Finance
Author: Matthew F. Dixon
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565
Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565
Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Advanced Computing, Networking and Security
Author: P. Santhi Thilagam
Publisher: Springer
ISBN: 3642292801
Category : Computers
Languages : en
Pages : 656
Book Description
This book constitutes revised selected papers from the International Conference on Advanced Computing, Networking and Security, ADCONS 2011, held in Surathkal, India, in December 2011. The 73 papers included in this book were carefully reviewed and selected from 289 submissions. The papers are organized in topical sections on distributed computing, image processing, pattern recognition, applied algorithms, wireless networking, sensor networks, network infrastructure, cryptography, Web security, and application security.
Publisher: Springer
ISBN: 3642292801
Category : Computers
Languages : en
Pages : 656
Book Description
This book constitutes revised selected papers from the International Conference on Advanced Computing, Networking and Security, ADCONS 2011, held in Surathkal, India, in December 2011. The 73 papers included in this book were carefully reviewed and selected from 289 submissions. The papers are organized in topical sections on distributed computing, image processing, pattern recognition, applied algorithms, wireless networking, sensor networks, network infrastructure, cryptography, Web security, and application security.
Nonlinear Dynamical Systems
Author: Irwin W. Sandberg
Publisher: John Wiley & Sons
ISBN: 9780471349112
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
Sechs erfahrene Autoren beschreiben in diesem Band ein Spezialgebiet der neuronalen Netze mit Anwendungen in der Signalsteuerung, Signalverarbeitung und Zeitreihenanalyse. Ein zeitgemäßer Beitrag zur Behandlung nichtlinear-dynamischer Systeme!
Publisher: John Wiley & Sons
ISBN: 9780471349112
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
Sechs erfahrene Autoren beschreiben in diesem Band ein Spezialgebiet der neuronalen Netze mit Anwendungen in der Signalsteuerung, Signalverarbeitung und Zeitreihenanalyse. Ein zeitgemäßer Beitrag zur Behandlung nichtlinear-dynamischer Systeme!
Neural Networks with R
Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788399412
Category : Computers
Languages : en
Pages : 264
Book Description
Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.
Publisher: Packt Publishing Ltd
ISBN: 1788399412
Category : Computers
Languages : en
Pages : 264
Book Description
Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.
Neural Network Design
Author: Martin T. Hagan
Publisher:
ISBN: 9789812403766
Category : Neural networks (Computer science)
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9789812403766
Category : Neural networks (Computer science)
Languages : en
Pages :
Book Description