Author: Feras A. Batarseh
Publisher: Academic Press
ISBN: 012812444X
Category : Computers
Languages : en
Pages : 258
Book Description
Federal Data Science serves as a guide for federal software engineers, government analysts, economists, researchers, data scientists, and engineering managers in deploying data analytics methods to governmental processes. Driven by open government (2009) and big data (2012) initiatives, federal agencies have a serious need to implement intelligent data management methods, share their data, and deploy advanced analytics to their processes. Using federal data for reactive decision making is not sufficient anymore, intelligent data systems allow for proactive activities that lead to benefits such as: improved citizen services, higher accountability, reduced delivery inefficiencies, lower costs, enhanced national insights, and better policy making. No other government-dedicated work has been found in literature that addresses this broad topic. This book provides multiple use-cases, describes federal data science benefits, and fills the gap in this critical and timely area. Written and reviewed by academics, industry experts, and federal analysts, the problems and challenges of developing data systems for government agencies is presented by actual developers, designers, and users of those systems, providing a unique and valuable real-world perspective. - Offers a range of data science models, engineering tools, and federal use-cases - Provides foundational observations into government data resources and requirements - Introduces experiences and examples of data openness from the US and other countries - A step-by-step guide for the conversion of government towards data-driven policy making - Focuses on presenting data models that work within the constraints of the US government - Presents the why, the what, and the how of injecting AI into federal culture and software systems
Federal Data Science
Author: Feras A. Batarseh
Publisher: Academic Press
ISBN: 012812444X
Category : Computers
Languages : en
Pages : 258
Book Description
Federal Data Science serves as a guide for federal software engineers, government analysts, economists, researchers, data scientists, and engineering managers in deploying data analytics methods to governmental processes. Driven by open government (2009) and big data (2012) initiatives, federal agencies have a serious need to implement intelligent data management methods, share their data, and deploy advanced analytics to their processes. Using federal data for reactive decision making is not sufficient anymore, intelligent data systems allow for proactive activities that lead to benefits such as: improved citizen services, higher accountability, reduced delivery inefficiencies, lower costs, enhanced national insights, and better policy making. No other government-dedicated work has been found in literature that addresses this broad topic. This book provides multiple use-cases, describes federal data science benefits, and fills the gap in this critical and timely area. Written and reviewed by academics, industry experts, and federal analysts, the problems and challenges of developing data systems for government agencies is presented by actual developers, designers, and users of those systems, providing a unique and valuable real-world perspective. - Offers a range of data science models, engineering tools, and federal use-cases - Provides foundational observations into government data resources and requirements - Introduces experiences and examples of data openness from the US and other countries - A step-by-step guide for the conversion of government towards data-driven policy making - Focuses on presenting data models that work within the constraints of the US government - Presents the why, the what, and the how of injecting AI into federal culture and software systems
Publisher: Academic Press
ISBN: 012812444X
Category : Computers
Languages : en
Pages : 258
Book Description
Federal Data Science serves as a guide for federal software engineers, government analysts, economists, researchers, data scientists, and engineering managers in deploying data analytics methods to governmental processes. Driven by open government (2009) and big data (2012) initiatives, federal agencies have a serious need to implement intelligent data management methods, share their data, and deploy advanced analytics to their processes. Using federal data for reactive decision making is not sufficient anymore, intelligent data systems allow for proactive activities that lead to benefits such as: improved citizen services, higher accountability, reduced delivery inefficiencies, lower costs, enhanced national insights, and better policy making. No other government-dedicated work has been found in literature that addresses this broad topic. This book provides multiple use-cases, describes federal data science benefits, and fills the gap in this critical and timely area. Written and reviewed by academics, industry experts, and federal analysts, the problems and challenges of developing data systems for government agencies is presented by actual developers, designers, and users of those systems, providing a unique and valuable real-world perspective. - Offers a range of data science models, engineering tools, and federal use-cases - Provides foundational observations into government data resources and requirements - Introduces experiences and examples of data openness from the US and other countries - A step-by-step guide for the conversion of government towards data-driven policy making - Focuses on presenting data models that work within the constraints of the US government - Presents the why, the what, and the how of injecting AI into federal culture and software systems
Data Science in the Public Interest: Improving Government Performance in the Workforce
Author: Joshua D. Hawley
Publisher: W.E. Upjohn Institute
ISBN: 0880996749
Category : Political Science
Languages : en
Pages : 152
Book Description
This book is about how new and underutilized types of big data sources can inform public policy decisions related to workforce development. Hawley describes how government is currently using data to inform decisions about the workforce at the state and local levels. He then moves beyond standardized performance metrics designed to serve federal agency requirements and discusses how government can improve data gathering and analysis to provide better, up-to-date information for government decision making.
Publisher: W.E. Upjohn Institute
ISBN: 0880996749
Category : Political Science
Languages : en
Pages : 152
Book Description
This book is about how new and underutilized types of big data sources can inform public policy decisions related to workforce development. Hawley describes how government is currently using data to inform decisions about the workforce at the state and local levels. He then moves beyond standardized performance metrics designed to serve federal agency requirements and discusses how government can improve data gathering and analysis to provide better, up-to-date information for government decision making.
Innovations in Federal Statistics
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 030945428X
Category : Social Science
Languages : en
Pages : 151
Book Description
Federal government statistics provide critical information to the country and serve a key role in a democracy. For decades, sample surveys with instruments carefully designed for particular data needs have been one of the primary methods for collecting data for federal statistics. However, the costs of conducting such surveys have been increasing while response rates have been declining, and many surveys are not able to fulfill growing demands for more timely information and for more detailed information at state and local levels. Innovations in Federal Statistics examines the opportunities and risks of using government administrative and private sector data sources to foster a paradigm shift in federal statistical programs that would combine diverse data sources in a secure manner to enhance federal statistics. This first publication of a two-part series discusses the challenges faced by the federal statistical system and the foundational elements needed for a new paradigm.
Publisher: National Academies Press
ISBN: 030945428X
Category : Social Science
Languages : en
Pages : 151
Book Description
Federal government statistics provide critical information to the country and serve a key role in a democracy. For decades, sample surveys with instruments carefully designed for particular data needs have been one of the primary methods for collecting data for federal statistics. However, the costs of conducting such surveys have been increasing while response rates have been declining, and many surveys are not able to fulfill growing demands for more timely information and for more detailed information at state and local levels. Innovations in Federal Statistics examines the opportunities and risks of using government administrative and private sector data sources to foster a paradigm shift in federal statistical programs that would combine diverse data sources in a secure manner to enhance federal statistics. This first publication of a two-part series discusses the challenges faced by the federal statistical system and the foundational elements needed for a new paradigm.
Data Science in Education Using R
Author: Ryan A. Estrellado
Publisher: Routledge
ISBN: 1000200906
Category : Education
Languages : en
Pages : 331
Book Description
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
Publisher: Routledge
ISBN: 1000200906
Category : Education
Languages : en
Pages : 331
Book Description
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
Principles and Practices for a Federal Statistical Agency
Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309725439
Category : Political Science
Languages : en
Pages : 0
Book Description
The 8th Edition of Principles and Practices for a Federal Statistical Agency supports the essential role of relevant, credible, trusted, independent, and innovative government statistics. Since 1992, this report has described the characteristics of effective federal statistical agencies. Government statistics are widely used to inform decisions by policymakers, program administrators, businesses and other organizations, as well as households and the general public. Principles and Practices is a concise tool to communicate the unique responsibilities of federal statistical agencies. It underscores the invaluable role that relevant, timely, accurate, and trustworthy government statistics play to inform the public and policymakers. Since 2001, an updated edition is released at the beginning of each presidential term. This eighth edition retains the five principles and ten practices established in prior editions, including updated examples and extensive appendices to reflect the many and varied changes across the national statistical system that have occurred since the passage of the Foundations for Evidence-Based Policymaking Act of 2018 ("Evidence Act"), the CHIPS and Science Act, and implementing regulations.
Publisher:
ISBN: 9780309725439
Category : Political Science
Languages : en
Pages : 0
Book Description
The 8th Edition of Principles and Practices for a Federal Statistical Agency supports the essential role of relevant, credible, trusted, independent, and innovative government statistics. Since 1992, this report has described the characteristics of effective federal statistical agencies. Government statistics are widely used to inform decisions by policymakers, program administrators, businesses and other organizations, as well as households and the general public. Principles and Practices is a concise tool to communicate the unique responsibilities of federal statistical agencies. It underscores the invaluable role that relevant, timely, accurate, and trustworthy government statistics play to inform the public and policymakers. Since 2001, an updated edition is released at the beginning of each presidential term. This eighth edition retains the five principles and ten practices established in prior editions, including updated examples and extensive appendices to reflect the many and varied changes across the national statistical system that have occurred since the passage of the Foundations for Evidence-Based Policymaking Act of 2018 ("Evidence Act"), the CHIPS and Science Act, and implementing regulations.
Federal Statistics, Multiple Data Sources, and Privacy Protection
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309465370
Category : Social Science
Languages : en
Pages : 195
Book Description
The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.
Publisher: National Academies Press
ISBN: 0309465370
Category : Social Science
Languages : en
Pages : 195
Book Description
The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.
Data Science for Business and Decision Making
Author: Luiz Paulo Favero
Publisher: Academic Press
ISBN: 0128112174
Category : Business & Economics
Languages : en
Pages : 1246
Book Description
Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs
Publisher: Academic Press
ISBN: 0128112174
Category : Business & Economics
Languages : en
Pages : 1246
Book Description
Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs
Fundamentals of Clinical Data Science
Author: Pieter Kubben
Publisher: Springer
ISBN: 3319997130
Category : Medical
Languages : en
Pages : 218
Book Description
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Publisher: Springer
ISBN: 3319997130
Category : Medical
Languages : en
Pages : 218
Book Description
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Modern Data Science with R
Author: Benjamin S. Baumer
Publisher: CRC Press
ISBN: 0429575394
Category : Business & Economics
Languages : en
Pages : 853
Book Description
From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.
Publisher: CRC Press
ISBN: 0429575394
Category : Business & Economics
Languages : en
Pages : 853
Book Description
From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.
Data Science Tools
Author: Christopher Greco
Publisher: Mercury Learning and Information
ISBN: 1683925823
Category : Computers
Languages : en
Pages : 353
Book Description
In the world of data science there are myriad tools available to analyze data. This book describes some of the popular software application tools along with the processes for downloading and using them in the most optimum fashion. The content includes data analysis using Microsoft Excel, KNIME, R, and OpenOffice (Spreadsheet). Each of these tools will be used to apply statistical concepts including confidence intervals, normal distribution, T-Tests, linear regression, histograms, and geographic analysis using real data from Federal Government sources. Features: Analyzes data using popular applications such as Excel, R, KNIME, and OpenOffice Covers statistical concepts including confidence intervals, normal distribution, T-Tests, linear regression, histograms, and geographic analysis Capstone exercises analyze data using the different software packages
Publisher: Mercury Learning and Information
ISBN: 1683925823
Category : Computers
Languages : en
Pages : 353
Book Description
In the world of data science there are myriad tools available to analyze data. This book describes some of the popular software application tools along with the processes for downloading and using them in the most optimum fashion. The content includes data analysis using Microsoft Excel, KNIME, R, and OpenOffice (Spreadsheet). Each of these tools will be used to apply statistical concepts including confidence intervals, normal distribution, T-Tests, linear regression, histograms, and geographic analysis using real data from Federal Government sources. Features: Analyzes data using popular applications such as Excel, R, KNIME, and OpenOffice Covers statistical concepts including confidence intervals, normal distribution, T-Tests, linear regression, histograms, and geographic analysis Capstone exercises analyze data using the different software packages