Author: Valter Carvelli
Publisher: John Wiley & Sons
ISBN: 1119413451
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
This book covers several aspects of the fatigue behavior of textile and short fiber reinforced composites. The first part is dedicated to 2D and 3D reinforced textile composites and includes a systematic description of the damage evolution for quasi-static and tensile-tensile fatigue loadings. Acoustic emissions and digital image correlation are considered in order to detect the damage modes’ initiation and development. The acoustic emission thresholds of the quasi-static loading are connected to the “fatigue limit” of the materials with distinctions for glass and carbon reinforcements. The second part is devoted to the fatigue behavior of injection molded short fiber reinforced composites. Experimental evidence highlights the dependence of their fatigue response on various factors: fiber and matrix materials, fiber distribution, environmental and loading conditions are described. A hybrid (experimental/simulations) multi-scale method is presented, which drastically reduces the amount of experimental data necessary for reliable fatigue life predictions.
Fatigue of Textile and Short Fiber Reinforced Composites
Author: Valter Carvelli
Publisher: John Wiley & Sons
ISBN: 1119413451
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
This book covers several aspects of the fatigue behavior of textile and short fiber reinforced composites. The first part is dedicated to 2D and 3D reinforced textile composites and includes a systematic description of the damage evolution for quasi-static and tensile-tensile fatigue loadings. Acoustic emissions and digital image correlation are considered in order to detect the damage modes’ initiation and development. The acoustic emission thresholds of the quasi-static loading are connected to the “fatigue limit” of the materials with distinctions for glass and carbon reinforcements. The second part is devoted to the fatigue behavior of injection molded short fiber reinforced composites. Experimental evidence highlights the dependence of their fatigue response on various factors: fiber and matrix materials, fiber distribution, environmental and loading conditions are described. A hybrid (experimental/simulations) multi-scale method is presented, which drastically reduces the amount of experimental data necessary for reliable fatigue life predictions.
Publisher: John Wiley & Sons
ISBN: 1119413451
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
This book covers several aspects of the fatigue behavior of textile and short fiber reinforced composites. The first part is dedicated to 2D and 3D reinforced textile composites and includes a systematic description of the damage evolution for quasi-static and tensile-tensile fatigue loadings. Acoustic emissions and digital image correlation are considered in order to detect the damage modes’ initiation and development. The acoustic emission thresholds of the quasi-static loading are connected to the “fatigue limit” of the materials with distinctions for glass and carbon reinforcements. The second part is devoted to the fatigue behavior of injection molded short fiber reinforced composites. Experimental evidence highlights the dependence of their fatigue response on various factors: fiber and matrix materials, fiber distribution, environmental and loading conditions are described. A hybrid (experimental/simulations) multi-scale method is presented, which drastically reduces the amount of experimental data necessary for reliable fatigue life predictions.
Fatigue of Textile and Short Fiber Reinforced Composites
Author: Valter Carvelli
Publisher: John Wiley & Sons
ISBN: 1786300214
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This book covers several aspects of the fatigue behavior of textile and short fiber reinforced composites. The first part is dedicated to 2D and 3D reinforced textile composites and includes a systematic description of the damage evolution for quasi-static and tensile-tensile fatigue loadings. Acoustic emissions and digital image correlation are considered in order to detect the damage modes’ initiation and development. The acoustic emission thresholds of the quasi-static loading are connected to the “fatigue limit” of the materials with distinctions for glass and carbon reinforcements. The second part is devoted to the fatigue behavior of injection molded short fiber reinforced composites. Experimental evidence highlights the dependence of their fatigue response on various factors: fiber and matrix materials, fiber distribution, environmental and loading conditions are described. A hybrid (experimental/simulations) multi-scale method is presented, which drastically reduces the amount of experimental data necessary for reliable fatigue life predictions.
Publisher: John Wiley & Sons
ISBN: 1786300214
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This book covers several aspects of the fatigue behavior of textile and short fiber reinforced composites. The first part is dedicated to 2D and 3D reinforced textile composites and includes a systematic description of the damage evolution for quasi-static and tensile-tensile fatigue loadings. Acoustic emissions and digital image correlation are considered in order to detect the damage modes’ initiation and development. The acoustic emission thresholds of the quasi-static loading are connected to the “fatigue limit” of the materials with distinctions for glass and carbon reinforcements. The second part is devoted to the fatigue behavior of injection molded short fiber reinforced composites. Experimental evidence highlights the dependence of their fatigue response on various factors: fiber and matrix materials, fiber distribution, environmental and loading conditions are described. A hybrid (experimental/simulations) multi-scale method is presented, which drastically reduces the amount of experimental data necessary for reliable fatigue life predictions.
Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites
Author: Wim Van Paepegem
Publisher: Woodhead Publishing
ISBN: 0128189851
Category : Technology & Engineering
Languages : en
Pages : 766
Book Description
Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:
Publisher: Woodhead Publishing
ISBN: 0128189851
Category : Technology & Engineering
Languages : en
Pages : 766
Book Description
Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:
Analysis and Performance of Fiber Composites
Author: Bhagwan D. Agarwal
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : ja
Pages : 376
Book Description
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : ja
Pages : 376
Book Description
Mechanical Behavior of Organic Matrix Composites
Author: Marco Gigliotti
Publisher: John Wiley & Sons
ISBN: 1119388848
Category : Science
Languages : en
Pages : 133
Book Description
The book focuses on the effect of ageing (thermo-oxidation, humid ageing) on the mechanical properties of organic matrix composite materials, covering: Bibliographic issues and a detailed state-of-the-art; phenomenological and experimental issues; modelling issues and models parameter identification; illustration and interpretation of experimental tests and proposal for novel test design in the light of the model predictions.
Publisher: John Wiley & Sons
ISBN: 1119388848
Category : Science
Languages : en
Pages : 133
Book Description
The book focuses on the effect of ageing (thermo-oxidation, humid ageing) on the mechanical properties of organic matrix composite materials, covering: Bibliographic issues and a detailed state-of-the-art; phenomenological and experimental issues; modelling issues and models parameter identification; illustration and interpretation of experimental tests and proposal for novel test design in the light of the model predictions.
Mechanics of Fiber and Textile Reinforced Cement Composites
Author: Barzin Mobasher
Publisher: CRC Press
ISBN: 1439806616
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
Among all building materials, concrete is the most commonly used-and there is a staggering demand for it. However, as we strive to build taller structures with improved seismic resistance or durable pavement with an indefinite service life, we require materials with better performance than the conventional materials used today. Considering the enor
Publisher: CRC Press
ISBN: 1439806616
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
Among all building materials, concrete is the most commonly used-and there is a staggering demand for it. However, as we strive to build taller structures with improved seismic resistance or durable pavement with an indefinite service life, we require materials with better performance than the conventional materials used today. Considering the enor
Natural and Synthetic Fiber Reinforced Composites
Author: Sanjay Mavinkere Rangappa
Publisher: John Wiley & Sons
ISBN: 3527349308
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
Natural and Synthetic Fiber Reinforced Composites Discover a comprehensive exploration of fiber reinforced polymers by an expert team of editors Fiber reinforced polymer (FRP) composites offer several unique properties that make them ideal for use in a wide range of industries, from automotive and aerospace to marine, construction, and co-industrial. In Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications, a distinguished team of mechanical engineers delivers a comprehensive overview of fiber reinforced composites. This edited volume includes thorough discussions of glass-, cotton-, and carbon-fiber reinforced materials, as well as the tribological properties and non-structural applications of synthetic fiber composites. Readers will also find practical explorations of the structural evolution, mechanical features, and future possibilities of fiber, textile, and nano-cementitious materials. The physical and chemical properties of cotton fiber-based composites are explored at length, as are the extraordinary mechanical, thermal, electrical, electronic, and field emission properties of carbon nanotubes. This singular book also includes: A thorough discussion of recent advancements in natural fiber reinforced polymer composites, their implications, and the opportunities that arise as a result A comprehensive exploration of the thermal behavior of natural fiber-based composites An insightful review of the literature on sisal fiber with polymer matrices A response to the growing research gap in the existing literature regarding natural fiber-based polymer composites and solutions to address it Perfect for scientists, engineers, professors, and students working in areas involving natural and synthetic reinforced polymers and composites, Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications offers a one-of-a-kind resource to help readers understand a critical and rapidly evolving technology.
Publisher: John Wiley & Sons
ISBN: 3527349308
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
Natural and Synthetic Fiber Reinforced Composites Discover a comprehensive exploration of fiber reinforced polymers by an expert team of editors Fiber reinforced polymer (FRP) composites offer several unique properties that make them ideal for use in a wide range of industries, from automotive and aerospace to marine, construction, and co-industrial. In Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications, a distinguished team of mechanical engineers delivers a comprehensive overview of fiber reinforced composites. This edited volume includes thorough discussions of glass-, cotton-, and carbon-fiber reinforced materials, as well as the tribological properties and non-structural applications of synthetic fiber composites. Readers will also find practical explorations of the structural evolution, mechanical features, and future possibilities of fiber, textile, and nano-cementitious materials. The physical and chemical properties of cotton fiber-based composites are explored at length, as are the extraordinary mechanical, thermal, electrical, electronic, and field emission properties of carbon nanotubes. This singular book also includes: A thorough discussion of recent advancements in natural fiber reinforced polymer composites, their implications, and the opportunities that arise as a result A comprehensive exploration of the thermal behavior of natural fiber-based composites An insightful review of the literature on sisal fiber with polymer matrices A response to the growing research gap in the existing literature regarding natural fiber-based polymer composites and solutions to address it Perfect for scientists, engineers, professors, and students working in areas involving natural and synthetic reinforced polymers and composites, Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications offers a one-of-a-kind resource to help readers understand a critical and rapidly evolving technology.
Fatigue of Composite Materials
Author: K.L. Reifsnider
Publisher: Elsevier
ISBN: 0444597182
Category : Technology & Engineering
Languages : en
Pages : 532
Book Description
This book provides the first comprehensive review of its kind on the long-term behaviour of composite materials and structures subjected to time variable mechanical, thermal, and chemical influences, a subject of critical importance to the design, development, and certification of high performance engineering structures. Specific topics examined include damage, damage characterization, and damage mechanics; fatigue testing and evaluation; fatigue behaviour of short and long fibre reinforced polymer and metal matrix materials; viscoelastic and moisture effects; delamination; statistical considerations; the modeling of cumulative damage development; and life prediction. The volume provides an extensive presentation of data, discussions, and comparisons on the behaviour of the major types of material systems in current use, as well as extensive analysis and modeling (including the first presentation of work not found elsewhere). The book will be of special interest to engineers concerned with reliability, maintainability, safety, certification, and damage tolerance; to materials developers concerned with making materials for long-term service, especially under severe loads and environments, and to lecturers, students, and researchers involved in material system design, performance, solid mechanics, fatigue, durability, and composite materials. The scope of the work extends from entry level material to the frontiers of the subject.
Publisher: Elsevier
ISBN: 0444597182
Category : Technology & Engineering
Languages : en
Pages : 532
Book Description
This book provides the first comprehensive review of its kind on the long-term behaviour of composite materials and structures subjected to time variable mechanical, thermal, and chemical influences, a subject of critical importance to the design, development, and certification of high performance engineering structures. Specific topics examined include damage, damage characterization, and damage mechanics; fatigue testing and evaluation; fatigue behaviour of short and long fibre reinforced polymer and metal matrix materials; viscoelastic and moisture effects; delamination; statistical considerations; the modeling of cumulative damage development; and life prediction. The volume provides an extensive presentation of data, discussions, and comparisons on the behaviour of the major types of material systems in current use, as well as extensive analysis and modeling (including the first presentation of work not found elsewhere). The book will be of special interest to engineers concerned with reliability, maintainability, safety, certification, and damage tolerance; to materials developers concerned with making materials for long-term service, especially under severe loads and environments, and to lecturers, students, and researchers involved in material system design, performance, solid mechanics, fatigue, durability, and composite materials. The scope of the work extends from entry level material to the frontiers of the subject.
CAE Design and Failure Analysis of Automotive Composites
Author: Srikanth Pilla
Publisher: SAE International
ISBN: 0768081688
Category : Technology & Engineering
Languages : en
Pages : 144
Book Description
Composites are now extensively used in applications where outstanding mechanical properties are necessary in combination with weight savings, due to their highly tunable microstructure and mechanical properties. These properties present great potential for part integration, which results in lower manufacturing costs and faster time to market. Composites also have a high level of styling flexibility in terms of deep drawn panel, which goes beyond what can be achieved with metal stampings. The so-called multifunctional or smart composites provide significant benefits to the vehicles as compared to the traditional materials that only have monotonic properties. CAE Design and Failure Analysis of Automotive Composites focuses on the latest use of CAE (Computer-Aided Engineering) methods in design and failure analysis of composite materials and structures, beginning with a brief introduction to the design and failure analysis of composite materials, and then presenting some recent, innovative CAE design examples of composite structures by engineers from major CAE developers and automobile OEMs and suppliers. This title brings together 12 SAE technical papers, carefully selected by the editors covering three main areas of expertise: • Design and Failure Analysis of Composites: Static Loading • Design and Failure Analysis of Composites: Dynamic and Impact Loading • Design and Failure Analysis of Composites: Blast Loading
Publisher: SAE International
ISBN: 0768081688
Category : Technology & Engineering
Languages : en
Pages : 144
Book Description
Composites are now extensively used in applications where outstanding mechanical properties are necessary in combination with weight savings, due to their highly tunable microstructure and mechanical properties. These properties present great potential for part integration, which results in lower manufacturing costs and faster time to market. Composites also have a high level of styling flexibility in terms of deep drawn panel, which goes beyond what can be achieved with metal stampings. The so-called multifunctional or smart composites provide significant benefits to the vehicles as compared to the traditional materials that only have monotonic properties. CAE Design and Failure Analysis of Automotive Composites focuses on the latest use of CAE (Computer-Aided Engineering) methods in design and failure analysis of composite materials and structures, beginning with a brief introduction to the design and failure analysis of composite materials, and then presenting some recent, innovative CAE design examples of composite structures by engineers from major CAE developers and automobile OEMs and suppliers. This title brings together 12 SAE technical papers, carefully selected by the editors covering three main areas of expertise: • Design and Failure Analysis of Composites: Static Loading • Design and Failure Analysis of Composites: Dynamic and Impact Loading • Design and Failure Analysis of Composites: Blast Loading
Fatigue of Textile Composites
Author: Valter Carvelli
Publisher: Elsevier
ISBN: 1782422935
Category : Technology & Engineering
Languages : en
Pages : 511
Book Description
Fatigue of Textile Composites provides a current, state-of-art review on recent investigations on the fatigue behavior of composite materials, mainly those reinforced with textiles. As this particular group of composite materials is extremely important for a wide variety of industrial applications, including automotive, aeronautical, and marine, etc., mainly due to their peculiarities and advantages with respect to unidirectional laminated composites, the text presents comprehensive information on the huge variety of interlacement geometric architectures that are suitable for a broad range of different applications, their excellent drapability and versatility, which is highly important for complex double-curvature shape components and three-dimensional woven fabrics without plane reinforcement, and their main mechanical characteristics which are currently in high demand from industry. - Presents the current state-of-the-art investigations on fatigue behavior of composite materials, mainly those reinforced with textiles - Contains invaluable information pertaining to a wide variety of industries, including automotive, aeronautical, and marine, amongst others - Provides comprehensive information on the huge variety of interlacement geometric architectures that are suitable for a broad range of different applications
Publisher: Elsevier
ISBN: 1782422935
Category : Technology & Engineering
Languages : en
Pages : 511
Book Description
Fatigue of Textile Composites provides a current, state-of-art review on recent investigations on the fatigue behavior of composite materials, mainly those reinforced with textiles. As this particular group of composite materials is extremely important for a wide variety of industrial applications, including automotive, aeronautical, and marine, etc., mainly due to their peculiarities and advantages with respect to unidirectional laminated composites, the text presents comprehensive information on the huge variety of interlacement geometric architectures that are suitable for a broad range of different applications, their excellent drapability and versatility, which is highly important for complex double-curvature shape components and three-dimensional woven fabrics without plane reinforcement, and their main mechanical characteristics which are currently in high demand from industry. - Presents the current state-of-the-art investigations on fatigue behavior of composite materials, mainly those reinforced with textiles - Contains invaluable information pertaining to a wide variety of industries, including automotive, aeronautical, and marine, amongst others - Provides comprehensive information on the huge variety of interlacement geometric architectures that are suitable for a broad range of different applications