Author: Andrey O. Matveev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311054766X
Category : Mathematics
Languages : en
Pages : 182
Book Description
As a first comprehensive overview on Farey sequences and subsequences, this monograph is intended as a reference for anyone looking for specific material or formulas related to the subject. Duality of subsequences and maps between them are discussed and explicit proofs are shown in detail. From the Content Basic structural and enumerative properties of Farey sequences, Collective decision making, Committee methods in pattern recognition, Farey duality, Farey sequence, Fundamental Farey subsequences, Monotone bijections between Farey subsequences
Farey Sequences
Author: Andrey O. Matveev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311054766X
Category : Mathematics
Languages : en
Pages : 182
Book Description
As a first comprehensive overview on Farey sequences and subsequences, this monograph is intended as a reference for anyone looking for specific material or formulas related to the subject. Duality of subsequences and maps between them are discussed and explicit proofs are shown in detail. From the Content Basic structural and enumerative properties of Farey sequences, Collective decision making, Committee methods in pattern recognition, Farey duality, Farey sequence, Fundamental Farey subsequences, Monotone bijections between Farey subsequences
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311054766X
Category : Mathematics
Languages : en
Pages : 182
Book Description
As a first comprehensive overview on Farey sequences and subsequences, this monograph is intended as a reference for anyone looking for specific material or formulas related to the subject. Duality of subsequences and maps between them are discussed and explicit proofs are shown in detail. From the Content Basic structural and enumerative properties of Farey sequences, Collective decision making, Committee methods in pattern recognition, Farey duality, Farey sequence, Fundamental Farey subsequences, Monotone bijections between Farey subsequences
Mathematical Diamonds
Author: Ross Honsberger
Publisher: Cambridge University Press
ISBN: 9780883853320
Category : Mathematics
Languages : en
Pages : 260
Book Description
Collection of elementary mathematical problems with solutions. Ideal for students, teachers and general readers.
Publisher: Cambridge University Press
ISBN: 9780883853320
Category : Mathematics
Languages : en
Pages : 260
Book Description
Collection of elementary mathematical problems with solutions. Ideal for students, teachers and general readers.
Algorithms - ESA 2007
Author: Lars Arge
Publisher: Springer
ISBN: 3540755209
Category : Computers
Languages : en
Pages : 782
Book Description
This book constitutes the refereed proceedings of the 15th Annual European Symposium on Algorithms, ESA 2007, held in Eilat, Israel, in October 2007 in the context of the combined conference ALGO 2007. The 63 revised full papers presented together with abstracts of three invited lectures address all current subjects in algorithmics reaching from design and analysis issues of algorithms over to real-world applications and engineering of algorithms in various fields.
Publisher: Springer
ISBN: 3540755209
Category : Computers
Languages : en
Pages : 782
Book Description
This book constitutes the refereed proceedings of the 15th Annual European Symposium on Algorithms, ESA 2007, held in Eilat, Israel, in October 2007 in the context of the combined conference ALGO 2007. The 63 revised full papers presented together with abstracts of three invited lectures address all current subjects in algorithmics reaching from design and analysis issues of algorithms over to real-world applications and engineering of algorithms in various fields.
A Compendium Of Musical Mathematics
Author: Franck Jedrzejewski
Publisher: World Scientific
ISBN: 9811284385
Category : Mathematics
Languages : en
Pages : 286
Book Description
The purpose of this book is to provide a concise introduction to the mathematical theory of music, opening each chapter to the most recent research. Despite the complexity of some sections, the book can be read by a large audience. Many examples illustrate the concepts introduced. The book is divided into 9 chapters.In the first chapter, we tackle the question of the classification of chords and scales. Chapter 2 is a mathematical presentation of David Lewin's Generalized Interval Systems. Chapter 3 offers a new theory of diatonicity in equal-tempered universes. Chapter 4 presents the Neo-Riemannian theories based on the work of David Lewin, Richard Cohn and Henry Klumpenhouwer. Chapter 5 is devoted to the application of word combinatorics to music. Chapter 6 studies the rhythmic canons and the tessellation of the line. Chapter 7 is devoted to serial knots. Chapter 8 presents combinatorial designs and their applications to music. The last chapter, chapter 9, is dedicated to the study of tuning systems.
Publisher: World Scientific
ISBN: 9811284385
Category : Mathematics
Languages : en
Pages : 286
Book Description
The purpose of this book is to provide a concise introduction to the mathematical theory of music, opening each chapter to the most recent research. Despite the complexity of some sections, the book can be read by a large audience. Many examples illustrate the concepts introduced. The book is divided into 9 chapters.In the first chapter, we tackle the question of the classification of chords and scales. Chapter 2 is a mathematical presentation of David Lewin's Generalized Interval Systems. Chapter 3 offers a new theory of diatonicity in equal-tempered universes. Chapter 4 presents the Neo-Riemannian theories based on the work of David Lewin, Richard Cohn and Henry Klumpenhouwer. Chapter 5 is devoted to the application of word combinatorics to music. Chapter 6 studies the rhythmic canons and the tessellation of the line. Chapter 7 is devoted to serial knots. Chapter 8 presents combinatorial designs and their applications to music. The last chapter, chapter 9, is dedicated to the study of tuning systems.
Computational Models of Rhythm and Meter
Author: Georg Boenn
Publisher: Springer
ISBN: 3319762850
Category : Computers
Languages : en
Pages : 191
Book Description
This book presents the latest computational models of rhythm and meter that are based on number theory, combinatorics and pattern matching. Two computational models of rhythm and meter are evaluated: The first one explores a relatively new field in Mathematics, namely Combinatorics on Words, specifically Christoffel Words and the Burrows-Wheeler Transform, together with integer partitions. The second model uses filtered Farey Sequences in combination with specific weights that are assigned to inter-onset ratios. This work is assessed within the context of the current state of the art of tempo tracking and computational music transcription. Furthermore, the author discusses various representations of musical rhythm, which lead to the development of a new shorthand notation that will be useful for musicologists and composers. Computational Models of Rhythm and Meter also contains numerous investigations into the timing structures of human rhythm and metre perception carried out within the last decade. Our solution to the transcription problem has been tested using a wide range of musical styles, and in particular using two recordings of J.S. Bach's Goldberg Variations by Glenn Gould. The technology is capable of modelling musical rhythm and meter by using Farey Sequences, and by detecting duration classes in a windowed analysis, which also detects the underlying tempo. The outcomes represent human performances of music as accurate as possible within Western score notation.
Publisher: Springer
ISBN: 3319762850
Category : Computers
Languages : en
Pages : 191
Book Description
This book presents the latest computational models of rhythm and meter that are based on number theory, combinatorics and pattern matching. Two computational models of rhythm and meter are evaluated: The first one explores a relatively new field in Mathematics, namely Combinatorics on Words, specifically Christoffel Words and the Burrows-Wheeler Transform, together with integer partitions. The second model uses filtered Farey Sequences in combination with specific weights that are assigned to inter-onset ratios. This work is assessed within the context of the current state of the art of tempo tracking and computational music transcription. Furthermore, the author discusses various representations of musical rhythm, which lead to the development of a new shorthand notation that will be useful for musicologists and composers. Computational Models of Rhythm and Meter also contains numerous investigations into the timing structures of human rhythm and metre perception carried out within the last decade. Our solution to the transcription problem has been tested using a wide range of musical styles, and in particular using two recordings of J.S. Bach's Goldberg Variations by Glenn Gould. The technology is capable of modelling musical rhythm and meter by using Farey Sequences, and by detecting duration classes in a windowed analysis, which also detects the underlying tempo. The outcomes represent human performances of music as accurate as possible within Western score notation.
Geometry of Continued Fractions
Author: Oleg Karpenkov
Publisher: Springer Science & Business Media
ISBN: 3642393683
Category : Mathematics
Languages : en
Pages : 409
Book Description
Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
Publisher: Springer Science & Business Media
ISBN: 3642393683
Category : Mathematics
Languages : en
Pages : 409
Book Description
Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
Infinite Ergodic Theory of Numbers
Author: Marc Kesseböhmer
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110439425
Category : Mathematics
Languages : en
Pages : 206
Book Description
By connecting dynamical systems and number theory, this graduate textbook on ergodic theory acts as an introduction to a highly active area of mathematics, where a variety of strands of research open up. The text explores various concepts in infinite ergodic theory, always using continued fractions and other number-theoretic dynamical systems as illustrative examples. Contents: Preface Mathematical symbols Number-theoretical dynamical systems Basic ergodic theory Renewal theory and α-sum-level sets Infinite ergodic theory Applications of infinite ergodic theory Bibliography Index
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110439425
Category : Mathematics
Languages : en
Pages : 206
Book Description
By connecting dynamical systems and number theory, this graduate textbook on ergodic theory acts as an introduction to a highly active area of mathematics, where a variety of strands of research open up. The text explores various concepts in infinite ergodic theory, always using continued fractions and other number-theoretic dynamical systems as illustrative examples. Contents: Preface Mathematical symbols Number-theoretical dynamical systems Basic ergodic theory Renewal theory and α-sum-level sets Infinite ergodic theory Applications of infinite ergodic theory Bibliography Index
The Chemistry of Matter Waves
Author: Jan C.A. Boeyens
Publisher: Springer Science & Business Media
ISBN: 9400775784
Category : Science
Languages : en
Pages : 250
Book Description
The quantum and relativity theories of physics are considered to underpin all of science in an absolute sense. This monograph argues against this proposition primarily on the basis of the two theories' incompatibility and of some untenable philosophical implications of the quantum model. Elementary matter is assumed in both theories to occur as zero-dimensional point particles. In relativity theory this requires the space-like region of the underlying Minkowski space-time to be rejected as unphysical, despite its precise mathematical characterization. In quantum theory it leads to an incomprehensible interpretation of the wave nature of matter in terms of a probability function and the equally obscure concept of wave-particle duality. The most worrisome aspect about quantum mechanics as a theory of chemistry is its total inability, despite unsubstantiated claims to the contrary, to account for the fundamental concepts of electron spin, molecular structure, and the periodic table of the elements. A remedy of all these defects by reformulation of both theories as nonlinear wave models in four-dimensional space-time is described.
Publisher: Springer Science & Business Media
ISBN: 9400775784
Category : Science
Languages : en
Pages : 250
Book Description
The quantum and relativity theories of physics are considered to underpin all of science in an absolute sense. This monograph argues against this proposition primarily on the basis of the two theories' incompatibility and of some untenable philosophical implications of the quantum model. Elementary matter is assumed in both theories to occur as zero-dimensional point particles. In relativity theory this requires the space-like region of the underlying Minkowski space-time to be rejected as unphysical, despite its precise mathematical characterization. In quantum theory it leads to an incomprehensible interpretation of the wave nature of matter in terms of a probability function and the equally obscure concept of wave-particle duality. The most worrisome aspect about quantum mechanics as a theory of chemistry is its total inability, despite unsubstantiated claims to the contrary, to account for the fundamental concepts of electron spin, molecular structure, and the periodic table of the elements. A remedy of all these defects by reformulation of both theories as nonlinear wave models in four-dimensional space-time is described.
Combinatorial Image Analysis
Author: Reinhard Klette
Publisher: Springer
ISBN: 3540305033
Category : Computers
Languages : en
Pages : 771
Book Description
This volume presents the proceedings of the 10th International Workshop on Combinatorial Image Analysis, held December 1–3, 2004, in Auckland, New Zealand. Prior meetings took place in Paris (France, 1991), Ube (Japan, 1992), Washington DC (USA, 1994), Lyon (France, 1995), Hiroshima (Japan, 1997), Madras (India, 1999), Caen (France, 2000), Philadelphia (USA, 2001), and - lermo (Italy, 2003). For this workshop we received 86 submitted papers from 23 countries. Each paper was evaluated by at least two independent referees. We selected 55 papers for the conference. Three invited lectures by Vladimir Kovalevsky (Berlin), Akira Nakamura (Hiroshima), and Maurice Nivat (Paris) completed the program. Conference papers are presented in this volume under the following topical part titles: discrete tomography (3 papers), combinatorics and computational models (6), combinatorial algorithms (6), combinatorial mathematics (4), d- ital topology (7), digital geometry (7), approximation of digital sets by curves and surfaces (5), algebraic approaches (5), fuzzy image analysis (2), image s- mentation (6), and matching and recognition (7). These subjects are dealt with in the context of digital image analysis or computer vision.
Publisher: Springer
ISBN: 3540305033
Category : Computers
Languages : en
Pages : 771
Book Description
This volume presents the proceedings of the 10th International Workshop on Combinatorial Image Analysis, held December 1–3, 2004, in Auckland, New Zealand. Prior meetings took place in Paris (France, 1991), Ube (Japan, 1992), Washington DC (USA, 1994), Lyon (France, 1995), Hiroshima (Japan, 1997), Madras (India, 1999), Caen (France, 2000), Philadelphia (USA, 2001), and - lermo (Italy, 2003). For this workshop we received 86 submitted papers from 23 countries. Each paper was evaluated by at least two independent referees. We selected 55 papers for the conference. Three invited lectures by Vladimir Kovalevsky (Berlin), Akira Nakamura (Hiroshima), and Maurice Nivat (Paris) completed the program. Conference papers are presented in this volume under the following topical part titles: discrete tomography (3 papers), combinatorics and computational models (6), combinatorial algorithms (6), combinatorial mathematics (4), d- ital topology (7), digital geometry (7), approximation of digital sets by curves and surfaces (5), algebraic approaches (5), fuzzy image analysis (2), image s- mentation (6), and matching and recognition (7). These subjects are dealt with in the context of digital image analysis or computer vision.
Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures
Author: Viktor Avrutin
Publisher: World Scientific
ISBN: 9811204713
Category : Mathematics
Languages : en
Pages : 649
Book Description
The investigation of dynamics of piecewise-smooth maps is both intriguing from the mathematical point of view and important for applications in various fields, ranging from mechanical and electrical engineering up to financial markets. In this book, we review the attracting and repelling invariant sets of continuous and discontinuous one-dimensional piecewise-smooth maps. We describe the bifurcations occurring in these maps (border collision and degenerate bifurcations, as well as homoclinic bifurcations and the related transformations of chaotic attractors) and survey the basic scenarios and structures involving these bifurcations. In particular, the bifurcation structures in the skew tent map and its application as a border collision normal form are discussed. We describe the period adding and incrementing bifurcation structures in the domain of regular dynamics of a discontinuous piecewise-linear map, and the related bandcount adding and incrementing structures in the domain of robust chaos. Also, we explain how these structures originate from particular codimension-two bifurcation points which act as organizing centers. In addition, we present the map replacement technique which provides a powerful tool for the description of bifurcation structures in piecewise-linear and other form of invariant maps to a much further extent than the other approaches.
Publisher: World Scientific
ISBN: 9811204713
Category : Mathematics
Languages : en
Pages : 649
Book Description
The investigation of dynamics of piecewise-smooth maps is both intriguing from the mathematical point of view and important for applications in various fields, ranging from mechanical and electrical engineering up to financial markets. In this book, we review the attracting and repelling invariant sets of continuous and discontinuous one-dimensional piecewise-smooth maps. We describe the bifurcations occurring in these maps (border collision and degenerate bifurcations, as well as homoclinic bifurcations and the related transformations of chaotic attractors) and survey the basic scenarios and structures involving these bifurcations. In particular, the bifurcation structures in the skew tent map and its application as a border collision normal form are discussed. We describe the period adding and incrementing bifurcation structures in the domain of regular dynamics of a discontinuous piecewise-linear map, and the related bandcount adding and incrementing structures in the domain of robust chaos. Also, we explain how these structures originate from particular codimension-two bifurcation points which act as organizing centers. In addition, we present the map replacement technique which provides a powerful tool for the description of bifurcation structures in piecewise-linear and other form of invariant maps to a much further extent than the other approaches.