Extrinsic Geometry of Foliations

Extrinsic Geometry of Foliations PDF Author: Vladimir Rovenski
Publisher: Springer Nature
ISBN: 3030700674
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.

Extrinsic Geometry of Foliations

Extrinsic Geometry of Foliations PDF Author: Vladimir Rovenski
Publisher: Springer Nature
ISBN: 3030700674
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.

Foliations 2005

Foliations 2005 PDF Author: Pawe? Grzegorz Walczak
Publisher: World Scientific
ISBN: 9812700749
Category : Mathematics
Languages : en
Pages : 490

Get Book Here

Book Description
This volume takes a look at the current state of the theory of foliations, with surveys and research articles concerning different aspects. The focused aspects cover geometry of foliated Riemannian manifolds, Riemannian foliations and dynamical properties of foliations and some aspects of classical dynamics related to the field. Among the articles readers may find a study of foliations which admit a transverse contractive flow, an extensive survey on non-commutative geometry of Riemannian foliations, an article on contact structures converging to foliations, as well as a few articles on conformal geometry of foliations. This volume also contains a list of open problems in foliation theory which were collected from the participants of the Foliations 2005 conference.

Geometry of Foliations

Geometry of Foliations PDF Author: Philippe Tondeur
Publisher: Springer Science & Business Media
ISBN: 9783764357412
Category : Gardening
Languages : en
Pages : 330

Get Book Here

Book Description
Surveys research over the past few years at a level accessible to graduate students and researchers with a background in differential and Riemannian geometry. Among the topics are foliations of codimension one, holonomy, Lie foliations, basic forms, mean curvature, the Hodge theory for the transversal Laplacian, applications of the heat equation method to Riemannian foliations, the spectral theory, Connes' perspective of foliations as examples of non- commutative spaces, and infinite-dimensional examples. The bibliographic appendices list books and surveys on particular aspects of foliations, proceedings of conferences and symposia, all papers on the subject up to 1995, and the numbers of papers published on the subject during the years 1990-95. Annotation copyrighted by Book News, Inc., Portland, OR

Foliations on Riemannian Manifolds and Submanifolds

Foliations on Riemannian Manifolds and Submanifolds PDF Author: Vladimir Rovenski
Publisher: Springer Science & Business Media
ISBN: 1461242703
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
This monograph is based on the author's results on the Riemannian ge ometry of foliations with nonnegative mixed curvature and on the geometry of sub manifolds with generators (rulings) in a Riemannian space of nonnegative curvature. The main idea is that such foliated (sub) manifolds can be decom posed when the dimension of the leaves (generators) is large. The methods of investigation are mostly synthetic. The work is divided into two parts, consisting of seven chapters and three appendices. Appendix A was written jointly with V. Toponogov. Part 1 is devoted to the Riemannian geometry of foliations. In the first few sections of Chapter I we give a survey of the basic results on foliated smooth manifolds (Sections 1.1-1.3), and finish in Section 1.4 with a discussion of the key problem of this work: the role of Riemannian curvature in the study of foliations on manifolds and submanifolds.

Foliations 2005 - Proceedings Of The International Conference

Foliations 2005 - Proceedings Of The International Conference PDF Author: Pawel Walczak
Publisher: World Scientific
ISBN: 9814476781
Category : Mathematics
Languages : en
Pages : 490

Get Book Here

Book Description
This volume takes a look at the current state of the theory of foliations, with surveys and research articles concerning different aspects. The focused aspects cover geometry of foliated Riemannian manifolds, Riemannian foliations and dynamical properties of foliations and some aspects of classical dynamics related to the field. Among the articles readers may find a study of foliations which admit a transverse contractive flow, an extensive survey on non-commutative geometry of Riemannian foliations, an article on contact structures converging to foliations, as well as a few articles on conformal geometry of foliations. This volume also contains a list of open problems in foliation theory which were collected from the participants of the Foliations 2005 conference.

Foliations and the Geometry of 3-Manifolds

Foliations and the Geometry of 3-Manifolds PDF Author: Danny Calegari
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.

Geometry and its Applications

Geometry and its Applications PDF Author: Vladimir Rovenski
Publisher: Springer
ISBN: 3319046756
Category : Mathematics
Languages : en
Pages : 247

Get Book Here

Book Description
This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as MapleTM and Mathematica® , as well as presentation of new results.

Topics in Extrinsic Geometry of Codimension-One Foliations

Topics in Extrinsic Geometry of Codimension-One Foliations PDF Author: Vladimir Rovenski
Publisher: Springer Science & Business Media
ISBN: 1441999086
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves. This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.

Metric Diffusion Along Foliations

Metric Diffusion Along Foliations PDF Author: Szymon M. Walczak
Publisher: Springer
ISBN: 3319575171
Category : Mathematics
Languages : en
Pages : 63

Get Book Here

Book Description
Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.

Differential Geometric Structures and Applications

Differential Geometric Structures and Applications PDF Author: Vladimir Rovenski
Publisher: Springer Nature
ISBN: 3031505867
Category :
Languages : en
Pages : 323

Get Book Here

Book Description