Author: Ben Andrews
Publisher: American Mathematical Society
ISBN: 1470464578
Category : Mathematics
Languages : en
Pages : 790
Book Description
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.
Extrinsic Geometric Flows
Author: Ben Andrews
Publisher: American Mathematical Society
ISBN: 1470464578
Category : Mathematics
Languages : en
Pages : 790
Book Description
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.
Publisher: American Mathematical Society
ISBN: 1470464578
Category : Mathematics
Languages : en
Pages : 790
Book Description
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.
Extrinsic Geometric Flows
Author: Bennett Chow
Publisher: American Mathematical Soc.
ISBN: 147045596X
Category : Education
Languages : en
Pages : 791
Book Description
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.
Publisher: American Mathematical Soc.
ISBN: 147045596X
Category : Education
Languages : en
Pages : 791
Book Description
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.
Extrinsic Geometry of Foliations
Author: Vladimir Rovenski
Publisher: Springer Nature
ISBN: 3030700674
Category : Mathematics
Languages : en
Pages : 319
Book Description
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.
Publisher: Springer Nature
ISBN: 3030700674
Category : Mathematics
Languages : en
Pages : 319
Book Description
This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.
Topics in Extrinsic Geometry of Codimension-One Foliations
Author: Vladimir Rovenski
Publisher: Springer Science & Business Media
ISBN: 1441999086
Category : Mathematics
Languages : en
Pages : 129
Book Description
Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves. This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.
Publisher: Springer Science & Business Media
ISBN: 1441999086
Category : Mathematics
Languages : en
Pages : 129
Book Description
Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves. This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.
Geometric Structures on Manifolds
Author: William M. Goldman
Publisher: American Mathematical Society
ISBN: 1470471035
Category : Mathematics
Languages : en
Pages : 494
Book Description
The theory of geometric structures on manifolds which are locally modeled on a homogeneous space of a Lie group traces back to Charles Ehresmann in the 1930s, although many examples had been studied previously. Such locally homogeneous geometric structures are special cases of Cartan connections where the associated curvature vanishes. This theory received a big boost in the 1970s when W. Thurston put his geometrization program for 3-manifolds in this context. The subject of this book is more ambitious in scope. Unlike Thurston's eight 3-dimensional geometries, it covers structures which are not metric structures, such as affine and projective structures. This book describes the known examples in dimensions one, two and three. Each geometry has its own special features, which provide special tools in its study. Emphasis is given to the interrelationships between different geometries and how one kind of geometric structure induces structures modeled on a different geometry. Up to now, much of the literature has been somewhat inaccessible and the book collects many of the pieces into one unified work. This book focuses on several successful classification problems. Namely, fix a geometry in the sense of Klein and a topological manifold. Then the different ways of locally putting the geometry on the manifold lead to a “moduli space”. Often the moduli space carries a rich geometry of its own reflecting the model geometry. The book is self-contained and accessible to students who have taken first-year graduate courses in topology, smooth manifolds, differential geometry and Lie groups.
Publisher: American Mathematical Society
ISBN: 1470471035
Category : Mathematics
Languages : en
Pages : 494
Book Description
The theory of geometric structures on manifolds which are locally modeled on a homogeneous space of a Lie group traces back to Charles Ehresmann in the 1930s, although many examples had been studied previously. Such locally homogeneous geometric structures are special cases of Cartan connections where the associated curvature vanishes. This theory received a big boost in the 1970s when W. Thurston put his geometrization program for 3-manifolds in this context. The subject of this book is more ambitious in scope. Unlike Thurston's eight 3-dimensional geometries, it covers structures which are not metric structures, such as affine and projective structures. This book describes the known examples in dimensions one, two and three. Each geometry has its own special features, which provide special tools in its study. Emphasis is given to the interrelationships between different geometries and how one kind of geometric structure induces structures modeled on a different geometry. Up to now, much of the literature has been somewhat inaccessible and the book collects many of the pieces into one unified work. This book focuses on several successful classification problems. Namely, fix a geometry in the sense of Klein and a topological manifold. Then the different ways of locally putting the geometry on the manifold lead to a “moduli space”. Often the moduli space carries a rich geometry of its own reflecting the model geometry. The book is self-contained and accessible to students who have taken first-year graduate courses in topology, smooth manifolds, differential geometry and Lie groups.
Ricci Solitons in Low Dimensions
Author: Bennett Chow
Publisher: American Mathematical Society
ISBN: 1470475235
Category : Mathematics
Languages : en
Pages : 358
Book Description
Ricci flow is an exciting subject of mathematics with diverse applications in geometry, topology, and other fields. It employs a heat-type equation to smooth an initial Riemannian metric on a manifold. The formation of singularities in the manifold's topology and geometry is a desirable outcome. Upon closer examination, these singularities often reveal intriguing structures known as Ricci solitons. This introductory book focuses on Ricci solitons, shedding light on their role in understanding singularity formation in Ricci flow and formulating surgery-based Ricci flow, which holds potential applications in topology. Notably successful in dimension 3, the book narrows its scope to low dimensions: 2 and 3, where the theory of Ricci solitons is well established. A comprehensive discussion of this theory is provided, while also establishing the groundwork for exploring Ricci solitons in higher dimensions. A particularly exciting area of study involves the potential applications of Ricci flow in comprehending the topology of 4-dimensional smooth manifolds. Geared towards graduate students who have completed a one-semester course on Riemannian geometry, this book serves as an ideal resource for related courses or seminars centered on Ricci solitons.
Publisher: American Mathematical Society
ISBN: 1470475235
Category : Mathematics
Languages : en
Pages : 358
Book Description
Ricci flow is an exciting subject of mathematics with diverse applications in geometry, topology, and other fields. It employs a heat-type equation to smooth an initial Riemannian metric on a manifold. The formation of singularities in the manifold's topology and geometry is a desirable outcome. Upon closer examination, these singularities often reveal intriguing structures known as Ricci solitons. This introductory book focuses on Ricci solitons, shedding light on their role in understanding singularity formation in Ricci flow and formulating surgery-based Ricci flow, which holds potential applications in topology. Notably successful in dimension 3, the book narrows its scope to low dimensions: 2 and 3, where the theory of Ricci solitons is well established. A comprehensive discussion of this theory is provided, while also establishing the groundwork for exploring Ricci solitons in higher dimensions. A particularly exciting area of study involves the potential applications of Ricci flow in comprehending the topology of 4-dimensional smooth manifolds. Geared towards graduate students who have completed a one-semester course on Riemannian geometry, this book serves as an ideal resource for related courses or seminars centered on Ricci solitons.
Geometry and its Applications
Author: Vladimir Rovenski
Publisher: Springer
ISBN: 3319046756
Category : Mathematics
Languages : en
Pages : 247
Book Description
This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as MapleTM and Mathematica® , as well as presentation of new results.
Publisher: Springer
ISBN: 3319046756
Category : Mathematics
Languages : en
Pages : 247
Book Description
This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as MapleTM and Mathematica® , as well as presentation of new results.
Classical and Discrete Differential Geometry
Author: David Xianfeng Gu
Publisher: CRC Press
ISBN: 1000804453
Category : Computers
Languages : en
Pages : 589
Book Description
This book introduces differential geometry and cutting-edge findings from the discipline by incorporating both classical approaches and modern discrete differential geometry across all facets and applications, including graphics and imaging, physics and networks. With curvature as the centerpiece, the authors present the development of differential geometry, from curves to surfaces, thence to higher dimensional manifolds; and from smooth structures to metric spaces, weighted manifolds and complexes, and to images, meshes and networks. The first part of the book is a differential geometric study of curves and surfaces in the Euclidean space, enhanced while the second part deals with higher dimensional manifolds centering on curvature by exploring the various ways of extending it to higher dimensional objects and more general structures and how to return to lower dimensional constructs. The third part focuses on computational algorithms in algebraic topology and conformal geometry, applicable for surface parameterization, shape registration and structured mesh generation. The volume will be a useful reference for students of mathematics and computer science, as well as researchers and engineering professionals who are interested in graphics and imaging, complex networks, differential geometry and curvature.
Publisher: CRC Press
ISBN: 1000804453
Category : Computers
Languages : en
Pages : 589
Book Description
This book introduces differential geometry and cutting-edge findings from the discipline by incorporating both classical approaches and modern discrete differential geometry across all facets and applications, including graphics and imaging, physics and networks. With curvature as the centerpiece, the authors present the development of differential geometry, from curves to surfaces, thence to higher dimensional manifolds; and from smooth structures to metric spaces, weighted manifolds and complexes, and to images, meshes and networks. The first part of the book is a differential geometric study of curves and surfaces in the Euclidean space, enhanced while the second part deals with higher dimensional manifolds centering on curvature by exploring the various ways of extending it to higher dimensional objects and more general structures and how to return to lower dimensional constructs. The third part focuses on computational algorithms in algebraic topology and conformal geometry, applicable for surface parameterization, shape registration and structured mesh generation. The volume will be a useful reference for students of mathematics and computer science, as well as researchers and engineering professionals who are interested in graphics and imaging, complex networks, differential geometry and curvature.
A First Course in Fractional Sobolev Spaces
Author: Giovanni Leoni
Publisher: American Mathematical Society
ISBN: 1470468980
Category : Mathematics
Languages : en
Pages : 605
Book Description
This book provides a gentle introduction to fractional Sobolev spaces which play a central role in the calculus of variations, partial differential equations, and harmonic analysis. The first part deals with fractional Sobolev spaces of one variable. It covers the definition, standard properties, extensions, embeddings, Hardy inequalities, and interpolation inequalities. The second part deals with fractional Sobolev spaces of several variables. The author studies completeness, density, homogeneous fractional Sobolev spaces, embeddings, necessary and sufficient conditions for extensions, Gagliardo-Nirenberg type interpolation inequalities, and trace theory. The third part explores some applications: interior regularity for the Poisson problem with the right-hand side in a fractional Sobolev space and some basic properties of the fractional Laplacian. The first part of the book is accessible to advanced undergraduates with a strong background in integration theory; the second part, to graduate students having familiarity with measure and integration and some functional analysis. Basic knowledge of Sobolev spaces would help, but is not necessary. The book can also serve as a reference for mathematicians working in the calculus of variations and partial differential equations as well as for researchers in other disciplines with a solid mathematics background. It contains several exercises and is self-contained.
Publisher: American Mathematical Society
ISBN: 1470468980
Category : Mathematics
Languages : en
Pages : 605
Book Description
This book provides a gentle introduction to fractional Sobolev spaces which play a central role in the calculus of variations, partial differential equations, and harmonic analysis. The first part deals with fractional Sobolev spaces of one variable. It covers the definition, standard properties, extensions, embeddings, Hardy inequalities, and interpolation inequalities. The second part deals with fractional Sobolev spaces of several variables. The author studies completeness, density, homogeneous fractional Sobolev spaces, embeddings, necessary and sufficient conditions for extensions, Gagliardo-Nirenberg type interpolation inequalities, and trace theory. The third part explores some applications: interior regularity for the Poisson problem with the right-hand side in a fractional Sobolev space and some basic properties of the fractional Laplacian. The first part of the book is accessible to advanced undergraduates with a strong background in integration theory; the second part, to graduate students having familiarity with measure and integration and some functional analysis. Basic knowledge of Sobolev spaces would help, but is not necessary. The book can also serve as a reference for mathematicians working in the calculus of variations and partial differential equations as well as for researchers in other disciplines with a solid mathematics background. It contains several exercises and is self-contained.
Introduction to Smooth Ergodic Theory
Author: Luís Barreira
Publisher: American Mathematical Society
ISBN: 1470473070
Category : Mathematics
Languages : en
Pages : 355
Book Description
This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.
Publisher: American Mathematical Society
ISBN: 1470473070
Category : Mathematics
Languages : en
Pages : 355
Book Description
This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.