Author: Aaron D. Bare
Publisher:
ISBN: 9781631956676
Category : Business & Economics
Languages : en
Pages : 225
Book Description
The definitive leadership book on digital adaptation and solving major global crises.
Exponential Theory: Reimaginingthe Future Through the Power of Thinking Big
Author: Aaron D. Bare
Publisher:
ISBN: 9781631956676
Category : Business & Economics
Languages : en
Pages : 225
Book Description
The definitive leadership book on digital adaptation and solving major global crises.
Publisher:
ISBN: 9781631956676
Category : Business & Economics
Languages : en
Pages : 225
Book Description
The definitive leadership book on digital adaptation and solving major global crises.
Exponential Random Graph Models for Social Networks
Author: Dean Lusher
Publisher: Cambridge University Press
ISBN: 0521193567
Category : Business & Economics
Languages : en
Pages : 361
Book Description
This book provides an account of the theoretical and methodological underpinnings of exponential random graph models (ERGMs).
Publisher: Cambridge University Press
ISBN: 0521193567
Category : Business & Economics
Languages : en
Pages : 361
Book Description
This book provides an account of the theoretical and methodological underpinnings of exponential random graph models (ERGMs).
Fundamentals of Statistical Exponential Families
Author: Lawrence D. Brown
Publisher: IMS
ISBN: 9780940600102
Category : Business & Economics
Languages : en
Pages : 302
Book Description
Publisher: IMS
ISBN: 9780940600102
Category : Business & Economics
Languages : en
Pages : 302
Book Description
Information and Exponential Families
Author: O. Barndorff-Nielsen
Publisher: John Wiley & Sons
ISBN: 1118857372
Category : Mathematics
Languages : en
Pages : 248
Book Description
First published by Wiley in 1978, this book is being re-issued with a new Preface by the author. The roots of the book lie in the writings of RA Fisher both as concerns results and the general stance to statistical science, and this stance was the determining factor in the author's selection of topics. His treatise brings together results on aspects of statistical information, notably concerning likelihood functions, plausibility functions, ancillarity, and sufficiency, and on exponential families of probability distributions.
Publisher: John Wiley & Sons
ISBN: 1118857372
Category : Mathematics
Languages : en
Pages : 248
Book Description
First published by Wiley in 1978, this book is being re-issued with a new Preface by the author. The roots of the book lie in the writings of RA Fisher both as concerns results and the general stance to statistical science, and this stance was the determining factor in the author's selection of topics. His treatise brings together results on aspects of statistical information, notably concerning likelihood functions, plausibility functions, ancillarity, and sufficiency, and on exponential families of probability distributions.
Weighted Littlewood-Paley Theory and Exponential-Square Integrability
Author: Michael Wilson
Publisher: Springer Science & Business Media
ISBN: 3540745823
Category : Mathematics
Languages : en
Pages : 233
Book Description
Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain oscillatory infinite series of functions in terms of infinite series of non-negative functions. Beginning in the 1980s, it was discovered that this control could be made much sharper than was previously suspected. The present book tries to give a gentle, well-motivated introduction to those discoveries, the methods behind them, their consequences, and some of their applications.
Publisher: Springer Science & Business Media
ISBN: 3540745823
Category : Mathematics
Languages : en
Pages : 233
Book Description
Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain oscillatory infinite series of functions in terms of infinite series of non-negative functions. Beginning in the 1980s, it was discovered that this control could be made much sharper than was previously suspected. The present book tries to give a gentle, well-motivated introduction to those discoveries, the methods behind them, their consequences, and some of their applications.
Exponential Distribution
Author: K. Balakrishnan
Publisher: Routledge
ISBN: 1351449117
Category : Mathematics
Languages : en
Pages : 668
Book Description
The exponential distribution is one of the most significant and widely used distribution in statistical practice. It possesses several important statistical properties, and yet exhibits great mathematical tractability. This volume provides a systematic and comprehensive synthesis of the diverse literature on the theory and applications of the expon
Publisher: Routledge
ISBN: 1351449117
Category : Mathematics
Languages : en
Pages : 668
Book Description
The exponential distribution is one of the most significant and widely used distribution in statistical practice. It possesses several important statistical properties, and yet exhibits great mathematical tractability. This volume provides a systematic and comprehensive synthesis of the diverse literature on the theory and applications of the expon
Van Der Corput's Method of Exponential Sums
Author: S. W. Graham
Publisher: Cambridge University Press
ISBN: 0521339278
Category : Mathematics
Languages : en
Pages : 133
Book Description
This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem.
Publisher: Cambridge University Press
ISBN: 0521339278
Category : Mathematics
Languages : en
Pages : 133
Book Description
This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem.
Parameterized Complexity Theory
Author: J. Flum
Publisher: Springer Science & Business Media
ISBN: 354029953X
Category : Computers
Languages : en
Pages : 494
Book Description
This book is a state-of-the-art introduction into both algorithmic techniques for fixed-parameter tractability and the structural theory of parameterized complexity classes. It presents detailed proofs of recent advanced results that have not appeared in book form before and replaces the earlier publication "Parameterized Complexity" by Downey and Fellows as the definitive book on this subject. The book will interest computer scientists, mathematicians and graduate students engaged with algorithms and problem complexity.
Publisher: Springer Science & Business Media
ISBN: 354029953X
Category : Computers
Languages : en
Pages : 494
Book Description
This book is a state-of-the-art introduction into both algorithmic techniques for fixed-parameter tractability and the structural theory of parameterized complexity classes. It presents detailed proofs of recent advanced results that have not appeared in book form before and replaces the earlier publication "Parameterized Complexity" by Downey and Fellows as the definitive book on this subject. The book will interest computer scientists, mathematicians and graduate students engaged with algorithms and problem complexity.
Unitary Representation Theory of Exponential Lie Groups
Author: Horst Leptin
Publisher: Walter de Gruyter
ISBN: 9783110139389
Category : Mathematics
Languages : en
Pages : 214
Book Description
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Publisher: Walter de Gruyter
ISBN: 9783110139389
Category : Mathematics
Languages : en
Pages : 214
Book Description
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Matrix-Exponential Distributions in Applied Probability
Author: Mogens Bladt
Publisher: Springer
ISBN: 1493970496
Category : Mathematics
Languages : en
Pages : 749
Book Description
This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications.
Publisher: Springer
ISBN: 1493970496
Category : Mathematics
Languages : en
Pages : 749
Book Description
This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications.