Exploring Emerging Device Physics for Efficient Spin-Based Neuromorphic Computing

Exploring Emerging Device Physics for Efficient Spin-Based Neuromorphic Computing PDF Author: Kezhou Yang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In the past decade artificial intelligence has undergone vast development thanks to deep learning techniques. However, the large computation overhead limits the application of AI in scenarios where area and energy consumption are limited. This is due to the mismatch in architecture between von Neumann hardware computing systems and deep learning algorithms. As a promising solution to the problem, neuromorphic computing has attracted great research interest. While there are efforts to build neuromorphic computing systems based on CMOS technology, memristors which provide intrinsic dynamics similar to synapses and neurons are also under exploration. Among different types of memristors, this dissertation focus on spintronic devices, which offer more plentiful neural or synaptic functionalities with a low operating voltage. The work in this dissertation consists of both simulation and experimental part. On simulation side, a stochastic neuron design based on magnetic tunnel junction utilizing magnetic-electro effect is proposed. The stochastic neurons are used to build spiking neural networks, which show improved spike sparsity with good test accuracy. Apart from spiking neural network, an all-spin Bayesian neural network is proposed, where intrinsic stochasticity of scaled devices is utilized for random number generation. Voltage controlled magnetic anisotropy effect-based magnetic tunnel junction is explored and utilized to solve write sneak path problem in crossbar array structure. On experiment side, Hall bars are fabricated on ferromagnetic/heavy metal materials stacks and utilized as neurons. Relations between Hall bar characteristics and size are explored. Hardware-in-loop training has been studied with Hall bar neurons.

Neuromorphic Devices for Brain-inspired Computing

Neuromorphic Devices for Brain-inspired Computing PDF Author: Qing Wan
Publisher: John Wiley & Sons
ISBN: 3527349790
Category : Technology & Engineering
Languages : en
Pages : 258

Get Book Here

Book Description
Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology’s potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.

Spintronics-Based Neuromorphic Computing

Spintronics-Based Neuromorphic Computing PDF Author: Debanjan Bhowmik
Publisher: Springer Nature
ISBN: 9819744458
Category :
Languages : en
Pages : 134

Get Book Here

Book Description


Introduction to Spintronics

Introduction to Spintronics PDF Author: Supriyo Bandyopadhyay
Publisher: CRC Press
ISBN: 148225557X
Category : Science
Languages : en
Pages : 650

Get Book Here

Book Description
Introduction to Spintronics provides an accessible, organized, and progressive presentation of the quantum mechanical concept of spin and the technology of using it to store, process, and communicate information. Fully updated and expanded to 18 chapters, this Second Edition:Reflects the explosion of study in spin-related physics, addressing seven

Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices PDF Author: Manan Suri
Publisher: Springer
ISBN: 813223703X
Category : Technology & Engineering
Languages : en
Pages : 217

Get Book Here

Book Description
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.

Advances in Neuromorphic Memristor Science and Applications

Advances in Neuromorphic Memristor Science and Applications PDF Author: Robert Kozma
Publisher: Springer Science & Business Media
ISBN: 9400744919
Category : Medical
Languages : en
Pages : 318

Get Book Here

Book Description
Physical implementation of the memristor at industrial scale sparked the interest from various disciplines, ranging from physics, nanotechnology, electrical engineering, neuroscience, to intelligent robotics. As any promising new technology, it has raised hopes and questions; it is an extremely challenging task to live up to the high expectations and to devise revolutionary and feasible future applications for memristive devices. The possibility of gathering prominent scientists in the heart of the Silicon Valley given by the 2011 International Joint Conference on Neural Networks held in San Jose, CA, has offered us the unique opportunity of organizing a series of special events on the present status and future perspectives in neuromorphic memristor science. This book presents a selection of the remarkable contributions given by the leaders of the field and it may serve as inspiration and future reference to all researchers that want to explore the extraordinary possibilities given by this revolutionary concept.

Energy Efficient Spintronic Device for Neuromorphic Computation

Energy Efficient Spintronic Device for Neuromorphic Computation PDF Author: Md Ali Azam
Publisher:
ISBN:
Category :
Languages : en
Pages : 65

Get Book Here

Book Description
Future computing will require significant development in new computing device paradigms. This is motivated by CMOS devices reaching their technological limits, the need for non-Von Neumann architectures as well as the energy constraints of wearable technologies and embedded processors. The first device proposal, an energy-efficient voltage-controlled domain wall device for implementing an artificial neuron and synapse is analyzed using micromagnetic modeling. By controlling the domain wall motion utilizing spin transfer or spin orbit torques in association with voltage generated strain control of perpendicular magnetic anisotropy in the presence of Dzyaloshinskii-Moriya interaction (DMI), different positions of the domain wall are realized in the free layer of a magnetic tunnel junction to program different synaptic weights. Additionally, an artificial neuron can be realized by combining this DW device with a CMOS buffer. The second neuromorphic device proposal is inspired by the brain. Membrane potential of many neurons oscillate in a subthreshold damped fashion and fire when excited by an input frequency that nearly equals their Eigen frequency. We investigate theoretical implementation of such "resonate-and-fire" neurons by utilizing the magnetization dynamics of a fixed magnetic skyrmion based free layer of a magnetic tunnel junction (MTJ). Voltage control of magnetic anisotropy or voltage generated strain results in expansion and shrinking of a skyrmion core that mimics the subthreshold oscillation. Finally, we show that such resonate and fire neurons have potential application in coupled nanomagnetic oscillator based associative memory arrays.

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design PDF Author: Nan Zheng
Publisher: John Wiley & Sons
ISBN: 1119507383
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.

Frontiers in Memristive Materials for Neuromorphic Processing Applications

Frontiers in Memristive Materials for Neuromorphic Processing Applications PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309683197
Category :
Languages : en
Pages :

Get Book Here

Book Description
Current von Neumann style computing is energy inefficient and bandwidth limited as information is physically shuttled via electrons between processor, short term non-volatile memory, and long-term storage. Biologically inspired neuromorphic computing, with its inherent autonomous learning capabilities and much lower power requirements based on analog processing, is seen as an avenue for overcoming these limitations. The development of nanoelectronic memory resistors, or memristors, is essential to neuromorphic architectures as they allow logic-based elements for information processing to be combined directly with nonvolatile memory for efficient emulation of neurons and synapses found in the brain. Memristors are typically composed of a switchable material with nonlinear hysteretic behavior sandwiched between two conducting encoding elements. The design, dynamic control, scaling and fundamental understanding of these materials is essential for establishing memristive devices. To explore the state-of-the-art in the materials fundamentally underlying memristor technologies: their science, their mechanisms and their functional imperatives to realize neuromorphic computing machines, the National Academies of Sciences, Engineering, and Medicine's Board on Physics and Astronomy convened a workshop on February 28, 2020. This publication summarizes the presentation and discussion of the workshop.

Energy Efficient Computing & Electronics

Energy Efficient Computing & Electronics PDF Author: Santosh K. Kurinec
Publisher: CRC Press
ISBN: 1351779869
Category : Computers
Languages : en
Pages : 452

Get Book Here

Book Description
In our abundant computing infrastructure, performance improvements across most all application spaces are now severely limited by the energy dissipation involved in processing, storing, and moving data. The exponential increase in the volume of data to be handled by our computational infrastructure is driven in large part by unstructured data from countless sources. This book explores revolutionary device concepts, associated circuits, and architectures that will greatly extend the practical engineering limits of energy-efficient computation from device to circuit to system level. With chapters written by international experts in their corresponding field, the text investigates new approaches to lower energy requirements in computing. Features • Has a comprehensive coverage of various technologies • Written by international experts in their corresponding field • Covers revolutionary concepts at the device, circuit, and system levels