Exploring Discrete Mathematics with Maple

Exploring Discrete Mathematics with Maple PDF Author: Kenneth H. Rosen
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN: 9780070541283
Category : Computer science
Languages : en
Pages : 0

Get Book Here

Book Description
This is the first supplement in discrete mathematics to concentrate on the computational aspects of the computer algebra system Maple. Detailed instructions for the use of Maple are included in an introductory chapter and in each subsequent chapter. Each chapter includes discussion of selected Computational and Exploration exercises in the corresponding chapter of Ken Rosen's text Discrete Math and It's Applications, Third Edition. New exercises and projects are included in each chapter to encourage further exploration of discrete mathematics using Maple. All of the Maple code in this supplement is available online via the Waterloo Maple Web site, in addition to new Maple routines that have been created which extend the current capabilities of Maple.

Exploring Discrete Mathematics with Maple

Exploring Discrete Mathematics with Maple PDF Author: Kenneth H. Rosen
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN: 9780070541283
Category : Computer science
Languages : en
Pages : 0

Get Book Here

Book Description
This is the first supplement in discrete mathematics to concentrate on the computational aspects of the computer algebra system Maple. Detailed instructions for the use of Maple are included in an introductory chapter and in each subsequent chapter. Each chapter includes discussion of selected Computational and Exploration exercises in the corresponding chapter of Ken Rosen's text Discrete Math and It's Applications, Third Edition. New exercises and projects are included in each chapter to encourage further exploration of discrete mathematics using Maple. All of the Maple code in this supplement is available online via the Waterloo Maple Web site, in addition to new Maple routines that have been created which extend the current capabilities of Maple.

Discovering Mathematics with Maple

Discovering Mathematics with Maple PDF Author: R.J. Stroeker
Publisher: Birkhäuser
ISBN: 3034887264
Category : Computers
Languages : en
Pages : 240

Get Book Here

Book Description
This unusual introduction to Maple shows readers how Maple or any other computer algebra system fits naturally into a mathematically oriented work environment. Designed for mathematicians, engineers, econometricians, and other scientists, this book shows how computer algebra can enhance their theoretical work. A CD-ROM contains all the Maple worksheets presented in the book.

Maple

Maple PDF Author: Bernard V Liengme
Publisher: Morgan & Claypool Publishers
ISBN: 1643274880
Category : Science
Languages : en
Pages : 171

Get Book Here

Book Description
Maple is a comprehensive symbolic mathematics application which is well suited for demonstrating physical science topics and solving associated problems. Because Maple is such a rich application, it has a somewhat steep learning curve. Most existing texts concentrate on mathematics; the Maple help facility is too detailed and lacks physical science examples, many Maple-related websites are out of date giving readers information on older Maple versions. This book records the author's journey of discovery; he was familiar with SMath but not with Maple and set out to learn the more advanced application. It leads readers through the basic Maple features with physical science worked examples, giving them a firm base on which to build if more complex features interest them.

Multivariable and Vector Calculus

Multivariable and Vector Calculus PDF Author: Sarhan M. Musa
Publisher: Mercury Learning and Information
ISBN: 1683929179
Category : Mathematics
Languages : en
Pages : 491

Get Book Here

Book Description
This book is designed primarily for undergraduates in mathematics, engineering, and the physical sciences. Rather than concentrating on technical skills, it focuses on a deeper understanding of the subject by providing many unusual and challenging examples. The basic topics of vector geometry, differentiation and integration in several variables are explored. Furthermore, it can be used to impower the mathematical knowledge for Artificial Intelligence (AI) concepts. It also provides numerous computer illustrations and tutorials using MATLAB® and Maple®, that bridge the gap between analysis and computation. Partial solutions and instructor ancillaries available for use as a textbook. FEATURES Includes numerous computer illustrations and tutorials using MATLAB®and Maple® Covers the major topics of vector geometry, differentiation, and integration in several variables Instructors’ ancillaries available upon adoption

First Leaves

First Leaves PDF Author: Bruce W. Char
Publisher: New York : Springer-Verlag
ISBN:
Category : Computers
Languages : en
Pages : 280

Get Book Here

Book Description


Mathematical Computing

Mathematical Computing PDF Author: David Betounes
Publisher: Springer Science & Business Media
ISBN: 1461300673
Category : Computers
Languages : en
Pages : 419

Get Book Here

Book Description
This book teaches introductory computer programming using Maple, offering more mathematically oriented exercises and problems than those found in traditional programming courses, while reinforcing and applying concepts and techniques of calculus. Includes case studies.

Advanced Mathematical Methods with Maple

Advanced Mathematical Methods with Maple PDF Author: Derek Richards
Publisher: Cambridge University Press
ISBN: 9780521779814
Category : Computers
Languages : en
Pages : 884

Get Book Here

Book Description
A user-friendly student guide to computer-assisted algebra with mathematical software packages such as Maple.

Introduction to Cryptography with Maple

Introduction to Cryptography with Maple PDF Author: José Luis Gómez Pardo
Publisher: Springer Science & Business Media
ISBN: 3642321666
Category : Computers
Languages : en
Pages : 726

Get Book Here

Book Description
This introduction to cryptography employs a programming-oriented approach to study the most important cryptographic schemes in current use and the main cryptanalytic attacks against them. Discussion of the theoretical aspects, emphasizing precise security definitions based on methodological tools such as complexity and randomness, and of the mathematical aspects, with emphasis on number-theoretic algorithms and their applications to cryptography and cryptanalysis, is integrated with the programming approach, thus providing implementations of the algorithms and schemes as well as examples of realistic size. A distinctive feature of the author's approach is the use of Maple as a programming environment in which not just the cryptographic primitives but also the most important cryptographic schemes are implemented following the recommendations of standards bodies such as NIST, with many of the known cryptanalytic attacks implemented as well. The purpose of the Maple implementations is to let the reader experiment and learn, and for this reason the author includes numerous examples. The book discusses important recent subjects such as homomorphic encryption, identity-based cryptography and elliptic curve cryptography. The algorithms and schemes which are treated in detail and implemented in Maple include AES and modes of operation, CMAC, GCM/GMAC, SHA-256, HMAC, RSA, Rabin, Elgamal, Paillier, Cocks IBE, DSA and ECDSA. In addition, some recently introduced schemes enjoying strong security properties, such as RSA-OAEP, Rabin-SAEP, Cramer--Shoup, and PSS, are also discussed and implemented. On the cryptanalysis side, Maple implementations and examples are used to discuss many important algorithms, including birthday and man-in-the-middle attacks, integer factorization algorithms such as Pollard's rho and the quadratic sieve, and discrete log algorithms such as baby-step giant-step, Pollard's rho, Pohlig--Hellman and the index calculus method. This textbook is suitable for advanced undergraduate and graduate students of computer science, engineering and mathematics, satisfying the requirements of various types of courses: a basic introductory course; a theoretically oriented course whose focus is on the precise definition of security concepts and on cryptographic schemes with reductionist security proofs; a practice-oriented course requiring little mathematical background and with an emphasis on applications; or a mathematically advanced course addressed to students with a stronger mathematical background. The main prerequisite is a basic knowledge of linear algebra and elementary calculus, and while some knowledge of probability and abstract algebra would be helpful, it is not essential because the book includes the necessary background from these subjects and, furthermore, explores the number-theoretic material in detail. The book is also a comprehensive reference and is suitable for self-study by practitioners and programmers.

Principles of Linear Algebra With Maple

Principles of Linear Algebra With Maple PDF Author: Kenneth M. Shiskowski
Publisher: Wiley
ISBN: 9780470637593
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
An accessible introduction to the theoretical and computational aspects of linear algebra using MapleTM Many topics in linear algebra can be computationally intensive, and software programs often serve as important tools for understanding challenging concepts and visualizing the geometric aspects of the subject. Principles of Linear Algebra with Maple uniquely addresses the quickly growing intersection between subject theory and numerical computation, providing all of the commands required to solve complex and computationally challenging linear algebra problems using Maple. The authors supply an informal, accessible, and easy-to-follow treatment of key topics often found in a first course in linear algebra. Requiring no prior knowledge of the software, the book begins with an introduction to the commands and programming guidelines for working with Maple. Next, the book explores linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics such as vectors, dot product, cross product, and vector projection are explained, as well as the more advanced topics of rotations in space, rolling a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, least squares fits and pseudoinverses, and eigenvalues and eigenvectors. The authors explore several topics that are not often found in introductory linear algebra books, including sensitivity to error and the effects of linear and affine maps on the geometry of objects. The Maple software highlights the topic's visual nature, as the book is complete with numerous graphics in two and three dimensions, animations, symbolic manipulations, numerical computations, and programming. In addition, a related Web site features supplemental material, including Maple code for each chapter's problems, solutions, and color versions of the book's figures. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Maple is an excellent book for courses on linear algebra at the undergraduate level. It is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Maple to solve linear algebra problems.

Differential Geometry and Its Applications

Differential Geometry and Its Applications PDF Author: John Oprea
Publisher: MAA
ISBN: 9780883857489
Category : Mathematics
Languages : en
Pages : 508

Get Book Here

Book Description
This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.