Author: Alexandra Grancharova
Publisher: Springer
ISBN: 3642287808
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: ؠ Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; - Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; - Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); - Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.
Explicit Nonlinear Model Predictive Control
Author: Alexandra Grancharova
Publisher: Springer
ISBN: 3642287808
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: ؠ Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; - Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; - Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); - Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.
Publisher: Springer
ISBN: 3642287808
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: ؠ Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; - Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; - Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); - Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.
Explicit Nonlinear Model Predictive Control
Author: Alexandra Grancharova
Publisher: Springer Science & Business Media
ISBN: 3642287794
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: ؠ Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; - Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; - Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); - Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.
Publisher: Springer Science & Business Media
ISBN: 3642287794
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: ؠ Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; - Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; - Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); - Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.
Assessment and Future Directions of Nonlinear Model Predictive Control
Author: Rolf Findeisen
Publisher: Springer
ISBN: 3540726993
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
Thepastthree decadeshaveseenrapiddevelopmentin the areaofmodelpred- tive control with respect to both theoretical and application aspects. Over these 30 years, model predictive control for linear systems has been widely applied, especially in the area of process control. However, today’s applications often require driving the process over a wide region and close to the boundaries of - erability, while satisfying constraints and achieving near-optimal performance. Consequently, the application of linear control methods does not always lead to satisfactory performance, and here nonlinear methods must be employed. This is one of the reasons why nonlinear model predictive control (NMPC) has - joyed signi?cant attention over the past years,with a number of recent advances on both the theoretical and application frontier. Additionally, the widespread availability and steadily increasing power of today’s computers, as well as the development of specially tailored numerical solution methods for NMPC, bring thepracticalapplicabilityofNMPCwithinreachevenforveryfastsystems.This has led to a series of new, exciting developments, along with new challenges in the area of NMPC.
Publisher: Springer
ISBN: 3540726993
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
Thepastthree decadeshaveseenrapiddevelopmentin the areaofmodelpred- tive control with respect to both theoretical and application aspects. Over these 30 years, model predictive control for linear systems has been widely applied, especially in the area of process control. However, today’s applications often require driving the process over a wide region and close to the boundaries of - erability, while satisfying constraints and achieving near-optimal performance. Consequently, the application of linear control methods does not always lead to satisfactory performance, and here nonlinear methods must be employed. This is one of the reasons why nonlinear model predictive control (NMPC) has - joyed signi?cant attention over the past years,with a number of recent advances on both the theoretical and application frontier. Additionally, the widespread availability and steadily increasing power of today’s computers, as well as the development of specially tailored numerical solution methods for NMPC, bring thepracticalapplicabilityofNMPCwithinreachevenforveryfastsystems.This has led to a series of new, exciting developments, along with new challenges in the area of NMPC.
Handbook of Model Predictive Control
Author: Saša V. Raković
Publisher: Springer
ISBN: 3319774891
Category : Science
Languages : en
Pages : 693
Book Description
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Publisher: Springer
ISBN: 3319774891
Category : Science
Languages : en
Pages : 693
Book Description
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Predictive Control for Linear and Hybrid Systems
Author: Francesco Borrelli
Publisher: Cambridge University Press
ISBN: 1107016886
Category : Mathematics
Languages : en
Pages : 447
Book Description
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
Publisher: Cambridge University Press
ISBN: 1107016886
Category : Mathematics
Languages : en
Pages : 447
Book Description
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
Fast Numerical Methods for Mixed-Integer Nonlinear Model-Predictive Control
Author: Christian Kirches
Publisher: Springer Science & Business Media
ISBN: 383488202X
Category : Computers
Languages : en
Pages : 380
Book Description
Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.
Publisher: Springer Science & Business Media
ISBN: 383488202X
Category : Computers
Languages : en
Pages : 380
Book Description
Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.
Nonlinear Model Predictive Control
Author: Lalo Magni
Publisher: Springer Science & Business Media
ISBN: 3642010938
Category : Technology & Engineering
Languages : en
Pages : 562
Book Description
Over the past few years significant progress has been achieved in the field of nonlinear model predictive control (NMPC), also referred to as receding horizon control or moving horizon control. More than 250 papers have been published in 2006 in ISI Journals. With this book we want to bring together the contributions of a diverse group of internationally well recognized researchers and industrial practitioners, to critically assess the current status of the NMPC field and to discuss future directions and needs. The book consists of selected papers presented at the International Workshop on Assessment an Future Directions of Nonlinear Model Predictive Control that took place from September 5 to 9, 2008, in Pavia, Italy.
Publisher: Springer Science & Business Media
ISBN: 3642010938
Category : Technology & Engineering
Languages : en
Pages : 562
Book Description
Over the past few years significant progress has been achieved in the field of nonlinear model predictive control (NMPC), also referred to as receding horizon control or moving horizon control. More than 250 papers have been published in 2006 in ISI Journals. With this book we want to bring together the contributions of a diverse group of internationally well recognized researchers and industrial practitioners, to critically assess the current status of the NMPC field and to discuss future directions and needs. The book consists of selected papers presented at the International Workshop on Assessment an Future Directions of Nonlinear Model Predictive Control that took place from September 5 to 9, 2008, in Pavia, Italy.
Uncertainty-aware Integration of Control with Process Operations and Multi-parametric Programming Under Global Uncertainty
Author: Vassilis M. Charitopoulos
Publisher: Springer Nature
ISBN: 3030381374
Category : Science
Languages : en
Pages : 285
Book Description
This book introduces models and methodologies that can be employed towards making the Industry 4.0 vision a reality within the process industries, and at the same time investigates the impact of uncertainties in such highly integrated settings. Advances in computing power along with the widespread availability of data have led process industries to consider a new paradigm for automated and more efficient operations. The book presents a theoretically proven optimal solution to multi-parametric linear and mixed-integer linear programs and efficient solutions to problems such as process scheduling and design under global uncertainty. It also proposes a systematic framework for the uncertainty-aware integration of planning, scheduling and control, based on the judicious coupling of reactive and proactive methods. Using these developments, the book demonstrates how the integration of different decision-making layers and their simultaneous optimisation can enhance industrial process operations and their economic resilience in the face of uncertainty.
Publisher: Springer Nature
ISBN: 3030381374
Category : Science
Languages : en
Pages : 285
Book Description
This book introduces models and methodologies that can be employed towards making the Industry 4.0 vision a reality within the process industries, and at the same time investigates the impact of uncertainties in such highly integrated settings. Advances in computing power along with the widespread availability of data have led process industries to consider a new paradigm for automated and more efficient operations. The book presents a theoretically proven optimal solution to multi-parametric linear and mixed-integer linear programs and efficient solutions to problems such as process scheduling and design under global uncertainty. It also proposes a systematic framework for the uncertainty-aware integration of planning, scheduling and control, based on the judicious coupling of reactive and proactive methods. Using these developments, the book demonstrates how the integration of different decision-making layers and their simultaneous optimisation can enhance industrial process operations and their economic resilience in the face of uncertainty.
Encyclopedia of Systems and Control
Author: John Baillieul
Publisher: Springer
ISBN: 9781447150572
Category : Technology & Engineering
Languages : en
Pages : 1554
Book Description
The Encyclopedia of Systems and Control collects a broad range of short expository articles that describe the current state of the art in the central topics of control and systems engineering as well as in many of the related fields in which control is an enabling technology. The editors have assembled the most comprehensive reference possible, and this has been greatly facilitated by the publisher’s commitment continuously to publish updates to the articles as they become available in the future. Although control engineering is now a mature discipline, it remains an area in which there is a great deal of research activity, and as new developments in both theory and applications become available, they will be included in the online version of the encyclopedia. A carefully chosen team of leading authorities in the field has written the well over 250 articles that comprise the work. The topics range from basic principles of feedback in servomechanisms to advanced topics such as the control of Boolean networks and evolutionary game theory. Because the content has been selected to reflect both foundational importance as well as subjects that are of current interest to the research and practitioner communities, a broad readership that includes students, application engineers, and research scientists will find material that is of interest.
Publisher: Springer
ISBN: 9781447150572
Category : Technology & Engineering
Languages : en
Pages : 1554
Book Description
The Encyclopedia of Systems and Control collects a broad range of short expository articles that describe the current state of the art in the central topics of control and systems engineering as well as in many of the related fields in which control is an enabling technology. The editors have assembled the most comprehensive reference possible, and this has been greatly facilitated by the publisher’s commitment continuously to publish updates to the articles as they become available in the future. Although control engineering is now a mature discipline, it remains an area in which there is a great deal of research activity, and as new developments in both theory and applications become available, they will be included in the online version of the encyclopedia. A carefully chosen team of leading authorities in the field has written the well over 250 articles that comprise the work. The topics range from basic principles of feedback in servomechanisms to advanced topics such as the control of Boolean networks and evolutionary game theory. Because the content has been selected to reflect both foundational importance as well as subjects that are of current interest to the research and practitioner communities, a broad readership that includes students, application engineers, and research scientists will find material that is of interest.
Model Predictive Control in the Process Industry
Author: Eduardo F. Camacho
Publisher: Springer Science & Business Media
ISBN: 1447130081
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.
Publisher: Springer Science & Business Media
ISBN: 1447130081
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.