Explainable AI in Healthcare and Medicine

Explainable AI in Healthcare and Medicine PDF Author: Arash Shaban-Nejad
Publisher: Springer Nature
ISBN: 3030533522
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
This book highlights the latest advances in the application of artificial intelligence and data science in health care and medicine. Featuring selected papers from the 2020 Health Intelligence Workshop, held as part of the Association for the Advancement of Artificial Intelligence (AAAI) Annual Conference, it offers an overview of the issues, challenges, and opportunities in the field, along with the latest research findings. Discussing a wide range of practical applications, it makes the emerging topics of digital health and explainable AI in health care and medicine accessible to a broad readership. The availability of explainable and interpretable models is a first step toward building a culture of transparency and accountability in health care. As such, this book provides information for scientists, researchers, students, industry professionals, public health agencies, and NGOs interested in the theory and practice of computational models of public and personalized health intelligence.

Explainable AI in Healthcare and Medicine

Explainable AI in Healthcare and Medicine PDF Author: Arash Shaban-Nejad
Publisher: Springer Nature
ISBN: 3030533522
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
This book highlights the latest advances in the application of artificial intelligence and data science in health care and medicine. Featuring selected papers from the 2020 Health Intelligence Workshop, held as part of the Association for the Advancement of Artificial Intelligence (AAAI) Annual Conference, it offers an overview of the issues, challenges, and opportunities in the field, along with the latest research findings. Discussing a wide range of practical applications, it makes the emerging topics of digital health and explainable AI in health care and medicine accessible to a broad readership. The availability of explainable and interpretable models is a first step toward building a culture of transparency and accountability in health care. As such, this book provides information for scientists, researchers, students, industry professionals, public health agencies, and NGOs interested in the theory and practice of computational models of public and personalized health intelligence.

Principles and Methods of Explainable Artificial Intelligence in Healthcare

Principles and Methods of Explainable Artificial Intelligence in Healthcare PDF Author: Victor Hugo C. De Albuquerque
Publisher: Medical Information Science Reference
ISBN: 9781668437919
Category :
Languages : en
Pages : 325

Get Book Here

Book Description
"This book focuses on the Explainable Artificial Intelligence (XAI) for healthcare, providing a broad overview of state-of-art approaches for accurate analysis and diagnosis, and encompassing computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, medical imaging data that assist in earlier prediction"--

Explainable Artificial Intelligence for Biomedical Applications

Explainable Artificial Intelligence for Biomedical Applications PDF Author: Utku Kose
Publisher: CRC Press
ISBN: 1003810586
Category : Technology & Engineering
Languages : en
Pages : 421

Get Book Here

Book Description
Since its first appearance, artificial intelligence has been ensuring revolutionary outcomes in the context of real-world problems. At this point, it has strong relations with biomedical and today’s intelligent systems compete with human capabilities in medical tasks. However, advanced use of artificial intelligence causes intelligent systems to be black-box. That situation is not good for building trustworthy intelligent systems in medical applications. For a remarkable amount of time, researchers have tried to solve the black-box issue by using modular additions, which have led to the rise of the term: interpretable artificial intelligence. As the literature matured (as a result of, in particular, deep learning), that term transformed into explainable artificial intelligence (XAI). This book provides an essential edited work regarding the latest advancements in explainable artificial intelligence (XAI) for biomedical applications. It includes not only introductive perspectives but also applied touches and discussions regarding critical problems as well as future insights. Topics discussed in the book include: XAI for the applications with medical images XAI use cases for alternative medical data/task Different XAI methods for biomedical applications Reviews for the XAI research for critical biomedical problems. Explainable Artificial Intelligence for Biomedical Applications is ideal for academicians, researchers, students, engineers, and experts from the fields of computer science, biomedical, medical, and health sciences. It also welcomes all readers of different fields to be informed about use cases of XAI in black-box artificial intelligence. In this sense, the book can be used for both teaching and reference source purposes.

Deep Learning in Gaming and Animations

Deep Learning in Gaming and Animations PDF Author: Moolchand Sharma
Publisher: CRC Press
ISBN: 9781032139302
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
The text discusses the core concepts and principles of deep learning in gaming and animation with applications in a single volume. It will be a useful reference text for graduate students, and professionals in diverse areas such as electrical engineering, electronics and communication engineering, computer science, gaming and animation.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Explainable Artificial Intelligence for Biomedical Applications

Explainable Artificial Intelligence for Biomedical Applications PDF Author: Utku Kose
Publisher:
ISBN: 9781003810605
Category : Artificial intelligence
Languages : en
Pages : 0

Get Book Here

Book Description
Since its first appearance, artificial intelligence has been ensuring revolutionary outcomes in the context of real-world problems. At this point, it has strong relations with biomedical and today0́9s intelligent systems compete with human capabilities in medical tasks. However, advanced use of artificial intelligence causes intelligent systems to be black-box. That situation is not good for building trustworthy intelligent systems in medical applications. For a remarkable amount of time, researchers have tried to solve the black-box issue by using modular additions, which have led to the rise of the term: interpretable artificial intelligence. As the literature matured (as a result of, in particular, deep learning), that term transformed into explainable artificial intelligence (XAI). This book provides an essential edited work regarding the latest advancements in explainable artificial intelligence (XAI) for biomedical applications. It includes not only introductive perspectives but also applied touches and discussions regarding critical problems as well as future insights. Topics discussed in the book include: 0́Ø XAI for the applications with medical images 0́Ø XAI use cases for alternative medical data/task 0́Ø Different XAI methods for biomedical applications 0́Ø Reviews for the XAI research for critical biomedical problems. Explainable Artificial Intelligence for Biomedical Applications is ideal for academicians, researchers, students, engineers, and experts from the fields of computer science, biomedical, medical, and health sciences. It also welcomes all readers of different fields to be informed about use cases of XAI in black-box artificial intelligence. In this sense, the book can be used for both teaching and reference source purposes.

Explainable Artificial Intelligence for Biomedical and Healthcare Applications

Explainable Artificial Intelligence for Biomedical and Healthcare Applications PDF Author: Aditya Khamparia
Publisher: CRC Press
ISBN: 1040126375
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
This reference text helps us understand how the concepts of explainable artificial intelligence (XAI) are used in the medical and healthcare sectors. The text discusses medical robotic systems using XAI and physical devices having autonomous behaviors for medical operations. It explores the usage of XAI for analyzing different types of unique data sets for medical image analysis, medical image registration, medical data synthesis, and information discovery. It covers important topics including XAI for biometric security, genomics, and medical disease diagnosis. This book: • Provides an excellent foundation for the core concepts and principles of explainable AI in biomedical and healthcare applications. • Covers explainable AI for robotics and autonomous systems. • Discusses usage of explainable AI in medical image analysis, medical image registration, and medical data synthesis. • Examines biometrics security-assisted applications and their integration using explainable AI. The text will be useful for graduate students, professionals, and academic researchers in diverse areas such as electrical engineering, electronics and communication engineering, biomedical engineering, and computer science.

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Embedded Systems and Artificial Intelligence

Embedded Systems and Artificial Intelligence PDF Author: Vikrant Bhateja
Publisher: Springer Nature
ISBN: 9811509476
Category : Technology & Engineering
Languages : en
Pages : 880

Get Book Here

Book Description
This book gathers selected research papers presented at the First International Conference on Embedded Systems and Artificial Intelligence (ESAI 2019), held at Sidi Mohamed Ben Abdellah University, Fez, Morocco, on 2–3 May 2019. Highlighting the latest innovations in Computer Science, Artificial Intelligence, Information Technologies, and Embedded Systems, the respective papers will encourage and inspire researchers, industry professionals, and policymakers to put these methods into practice.

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging PDF Author: Erik R. Ranschaert
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369

Get Book Here

Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.