Author: David Sweet
Publisher: Simon and Schuster
ISBN: 1638356904
Category : Computers
Languages : en
Pages : 246
Book Description
Optimize the performance of your systems with practical experiments used by engineers in the world’s most competitive industries. In Experimentation for Engineers: From A/B testing to Bayesian optimization you will learn how to: Design, run, and analyze an A/B test Break the "feedback loops" caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization Clearly define business metrics used for decision-making Identify and avoid the common pitfalls of experimentation Experimentation for Engineers: From A/B testing to Bayesian optimization is a toolbox of techniques for evaluating new features and fine-tuning parameters. You’ll start with a deep dive into methods like A/B testing, and then graduate to advanced techniques used to measure performance in industries such as finance and social media. Learn how to evaluate the changes you make to your system and ensure that your testing doesn’t undermine revenue or other business metrics. By the time you’re done, you’ll be able to seamlessly deploy experiments in production while avoiding common pitfalls. About the technology Does my software really work? Did my changes make things better or worse? Should I trade features for performance? Experimentation is the only way to answer questions like these. This unique book reveals sophisticated experimentation practices developed and proven in the world’s most competitive industries that will help you enhance machine learning systems, software applications, and quantitative trading solutions. About the book Experimentation for Engineers: From A/B testing to Bayesian optimization delivers a toolbox of processes for optimizing software systems. You’ll start by learning the limits of A/B testing, and then graduate to advanced experimentation strategies that take advantage of machine learning and probabilistic methods. The skills you’ll master in this practical guide will help you minimize the costs of experimentation and quickly reveal which approaches and features deliver the best business results. What's inside Design, run, and analyze an A/B test Break the “feedback loops” caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization About the reader For ML and software engineers looking to extract the most value from their systems. Examples in Python and NumPy. About the author David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram. He teaches in the AI and Data Science master's programs at Yeshiva University. Table of Contents 1 Optimizing systems by experiment 2 A/B testing: Evaluating a modification to your system 3 Multi-armed bandits: Maximizing business metrics while experimenting 4 Response surface methodology: Optimizing continuous parameters 5 Contextual bandits: Making targeted decisions 6 Bayesian optimization: Automating experimental optimization 7 Managing business metrics 8 Practical considerations
Experimentation for Engineers
Author: David Sweet
Publisher: Simon and Schuster
ISBN: 1638356904
Category : Computers
Languages : en
Pages : 246
Book Description
Optimize the performance of your systems with practical experiments used by engineers in the world’s most competitive industries. In Experimentation for Engineers: From A/B testing to Bayesian optimization you will learn how to: Design, run, and analyze an A/B test Break the "feedback loops" caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization Clearly define business metrics used for decision-making Identify and avoid the common pitfalls of experimentation Experimentation for Engineers: From A/B testing to Bayesian optimization is a toolbox of techniques for evaluating new features and fine-tuning parameters. You’ll start with a deep dive into methods like A/B testing, and then graduate to advanced techniques used to measure performance in industries such as finance and social media. Learn how to evaluate the changes you make to your system and ensure that your testing doesn’t undermine revenue or other business metrics. By the time you’re done, you’ll be able to seamlessly deploy experiments in production while avoiding common pitfalls. About the technology Does my software really work? Did my changes make things better or worse? Should I trade features for performance? Experimentation is the only way to answer questions like these. This unique book reveals sophisticated experimentation practices developed and proven in the world’s most competitive industries that will help you enhance machine learning systems, software applications, and quantitative trading solutions. About the book Experimentation for Engineers: From A/B testing to Bayesian optimization delivers a toolbox of processes for optimizing software systems. You’ll start by learning the limits of A/B testing, and then graduate to advanced experimentation strategies that take advantage of machine learning and probabilistic methods. The skills you’ll master in this practical guide will help you minimize the costs of experimentation and quickly reveal which approaches and features deliver the best business results. What's inside Design, run, and analyze an A/B test Break the “feedback loops” caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization About the reader For ML and software engineers looking to extract the most value from their systems. Examples in Python and NumPy. About the author David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram. He teaches in the AI and Data Science master's programs at Yeshiva University. Table of Contents 1 Optimizing systems by experiment 2 A/B testing: Evaluating a modification to your system 3 Multi-armed bandits: Maximizing business metrics while experimenting 4 Response surface methodology: Optimizing continuous parameters 5 Contextual bandits: Making targeted decisions 6 Bayesian optimization: Automating experimental optimization 7 Managing business metrics 8 Practical considerations
Publisher: Simon and Schuster
ISBN: 1638356904
Category : Computers
Languages : en
Pages : 246
Book Description
Optimize the performance of your systems with practical experiments used by engineers in the world’s most competitive industries. In Experimentation for Engineers: From A/B testing to Bayesian optimization you will learn how to: Design, run, and analyze an A/B test Break the "feedback loops" caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization Clearly define business metrics used for decision-making Identify and avoid the common pitfalls of experimentation Experimentation for Engineers: From A/B testing to Bayesian optimization is a toolbox of techniques for evaluating new features and fine-tuning parameters. You’ll start with a deep dive into methods like A/B testing, and then graduate to advanced techniques used to measure performance in industries such as finance and social media. Learn how to evaluate the changes you make to your system and ensure that your testing doesn’t undermine revenue or other business metrics. By the time you’re done, you’ll be able to seamlessly deploy experiments in production while avoiding common pitfalls. About the technology Does my software really work? Did my changes make things better or worse? Should I trade features for performance? Experimentation is the only way to answer questions like these. This unique book reveals sophisticated experimentation practices developed and proven in the world’s most competitive industries that will help you enhance machine learning systems, software applications, and quantitative trading solutions. About the book Experimentation for Engineers: From A/B testing to Bayesian optimization delivers a toolbox of processes for optimizing software systems. You’ll start by learning the limits of A/B testing, and then graduate to advanced experimentation strategies that take advantage of machine learning and probabilistic methods. The skills you’ll master in this practical guide will help you minimize the costs of experimentation and quickly reveal which approaches and features deliver the best business results. What's inside Design, run, and analyze an A/B test Break the “feedback loops” caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization About the reader For ML and software engineers looking to extract the most value from their systems. Examples in Python and NumPy. About the author David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram. He teaches in the AI and Data Science master's programs at Yeshiva University. Table of Contents 1 Optimizing systems by experiment 2 A/B testing: Evaluating a modification to your system 3 Multi-armed bandits: Maximizing business metrics while experimenting 4 Response surface methodology: Optimizing continuous parameters 5 Contextual bandits: Making targeted decisions 6 Bayesian optimization: Automating experimental optimization 7 Managing business metrics 8 Practical considerations
Design of Experiments for Engineers and Scientists
Author: Jiju Antony
Publisher: Elsevier
ISBN: 0080994199
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Publisher: Elsevier
ISBN: 0080994199
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Experimentation in Software Engineering
Author: Claes Wohlin
Publisher: Springer Science & Business Media
ISBN: 3642290442
Category : Computers
Languages : en
Pages : 249
Book Description
Like other sciences and engineering disciplines, software engineering requires a cycle of model building, experimentation, and learning. Experiments are valuable tools for all software engineers who are involved in evaluating and choosing between different methods, techniques, languages and tools. The purpose of Experimentation in Software Engineering is to introduce students, teachers, researchers, and practitioners to empirical studies in software engineering, using controlled experiments. The introduction to experimentation is provided through a process perspective, and the focus is on the steps that we have to go through to perform an experiment. The book is divided into three parts. The first part provides a background of theories and methods used in experimentation. Part II then devotes one chapter to each of the five experiment steps: scoping, planning, execution, analysis, and result presentation. Part III completes the presentation with two examples. Assignments and statistical material are provided in appendixes. Overall the book provides indispensable information regarding empirical studies in particular for experiments, but also for case studies, systematic literature reviews, and surveys. It is a revision of the authors’ book, which was published in 2000. In addition, substantial new material, e.g. concerning systematic literature reviews and case study research, is introduced. The book is self-contained and it is suitable as a course book in undergraduate or graduate studies where the need for empirical studies in software engineering is stressed. Exercises and assignments are included to combine the more theoretical material with practical aspects. Researchers will also benefit from the book, learning more about how to conduct empirical studies, and likewise practitioners may use it as a “cookbook” when evaluating new methods or techniques before implementing them in their organization.
Publisher: Springer Science & Business Media
ISBN: 3642290442
Category : Computers
Languages : en
Pages : 249
Book Description
Like other sciences and engineering disciplines, software engineering requires a cycle of model building, experimentation, and learning. Experiments are valuable tools for all software engineers who are involved in evaluating and choosing between different methods, techniques, languages and tools. The purpose of Experimentation in Software Engineering is to introduce students, teachers, researchers, and practitioners to empirical studies in software engineering, using controlled experiments. The introduction to experimentation is provided through a process perspective, and the focus is on the steps that we have to go through to perform an experiment. The book is divided into three parts. The first part provides a background of theories and methods used in experimentation. Part II then devotes one chapter to each of the five experiment steps: scoping, planning, execution, analysis, and result presentation. Part III completes the presentation with two examples. Assignments and statistical material are provided in appendixes. Overall the book provides indispensable information regarding empirical studies in particular for experiments, but also for case studies, systematic literature reviews, and surveys. It is a revision of the authors’ book, which was published in 2000. In addition, substantial new material, e.g. concerning systematic literature reviews and case study research, is introduced. The book is self-contained and it is suitable as a course book in undergraduate or graduate studies where the need for empirical studies in software engineering is stressed. Exercises and assignments are included to combine the more theoretical material with practical aspects. Researchers will also benefit from the book, learning more about how to conduct empirical studies, and likewise practitioners may use it as a “cookbook” when evaluating new methods or techniques before implementing them in their organization.
Basics of Software Engineering Experimentation
Author: Natalia Juristo
Publisher: Springer Science & Business Media
ISBN: 1475733046
Category : Computers
Languages : en
Pages : 405
Book Description
Basics of Software Engineering Experimentation is a practical guide to experimentation in a field which has long been underpinned by suppositions, assumptions, speculations and beliefs. It demonstrates to software engineers how Experimental Design and Analysis can be used to validate their beliefs and ideas. The book does not assume its readers have an in-depth knowledge of mathematics, specifying the conceptual essence of the techniques to use in the design and analysis of experiments and keeping the mathematical calculations clear and simple. Basics of Software Engineering Experimentation is practically oriented and is specially written for software engineers, all the examples being based on real and fictitious software engineering experiments.
Publisher: Springer Science & Business Media
ISBN: 1475733046
Category : Computers
Languages : en
Pages : 405
Book Description
Basics of Software Engineering Experimentation is a practical guide to experimentation in a field which has long been underpinned by suppositions, assumptions, speculations and beliefs. It demonstrates to software engineers how Experimental Design and Analysis can be used to validate their beliefs and ideas. The book does not assume its readers have an in-depth knowledge of mathematics, specifying the conceptual essence of the techniques to use in the design and analysis of experiments and keeping the mathematical calculations clear and simple. Basics of Software Engineering Experimentation is practically oriented and is specially written for software engineers, all the examples being based on real and fictitious software engineering experiments.
Experimentation, Validation, and Uncertainty Analysis for Engineers
Author: Hugh W. Coleman
Publisher: John Wiley & Sons
ISBN: 1119417708
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
Helps engineers and scientists assess and manage uncertainty at all stages of experimentation and validation of simulations Fully updated from its previous edition, Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes expanded coverage and new examples of applying the Monte Carlo Method (MCM) in performing uncertainty analyses. Presenting the current, internationally accepted methodology from ISO, ANSI, and ASME standards for propagating uncertainties using both the MCM and the Taylor Series Method (TSM), it provides a logical approach to experimentation and validation through the application of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting phases of experimental and validation programs. It also illustrates how to use a spreadsheet approach to apply the MCM and the TSM, based on the authors’ experience in applying uncertainty analysis in complex, large-scale testing of real engineering systems. Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes examples throughout, contains end of chapter problems, and is accompanied by the authors’ website www.uncertainty-analysis.com. Guides readers through all aspects of experimentation, validation, and uncertainty analysis Emphasizes the use of the Monte Carlo Method in performing uncertainty analysis Includes complete new examples throughout Features workable problems at the end of chapters Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition is an ideal text and guide for researchers, engineers, and graduate and senior undergraduate students in engineering and science disciplines. Knowledge of the material in this Fourth Edition is a must for those involved in executing or managing experimental programs or validating models and simulations.
Publisher: John Wiley & Sons
ISBN: 1119417708
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
Helps engineers and scientists assess and manage uncertainty at all stages of experimentation and validation of simulations Fully updated from its previous edition, Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes expanded coverage and new examples of applying the Monte Carlo Method (MCM) in performing uncertainty analyses. Presenting the current, internationally accepted methodology from ISO, ANSI, and ASME standards for propagating uncertainties using both the MCM and the Taylor Series Method (TSM), it provides a logical approach to experimentation and validation through the application of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting phases of experimental and validation programs. It also illustrates how to use a spreadsheet approach to apply the MCM and the TSM, based on the authors’ experience in applying uncertainty analysis in complex, large-scale testing of real engineering systems. Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes examples throughout, contains end of chapter problems, and is accompanied by the authors’ website www.uncertainty-analysis.com. Guides readers through all aspects of experimentation, validation, and uncertainty analysis Emphasizes the use of the Monte Carlo Method in performing uncertainty analysis Includes complete new examples throughout Features workable problems at the end of chapters Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition is an ideal text and guide for researchers, engineers, and graduate and senior undergraduate students in engineering and science disciplines. Knowledge of the material in this Fourth Edition is a must for those involved in executing or managing experimental programs or validating models and simulations.
Experimental Methods and Instrumentation for Chemical Engineers
Author: Gregory S. Patience
Publisher: Elsevier
ISBN: 0444637923
Category : Science
Languages : en
Pages : 426
Book Description
Experimental Methods and Instrumentation for Chemical Engineers, Second Edition, touches many aspects of engineering practice, research, and statistics. The principles of unit operations, transport phenomena, and plant design constitute the focus of chemical engineering in the latter years of the curricula. Experimental methods and instrumentation is the precursor to these subjects. This resource integrates these concepts with statistics and uncertainty analysis to define what is necessary to measure and to control, how precisely and how often.The completely updated second edition is divided into several themes related to data: metrology, notions of statistics, and design of experiments. The book then covers basic principles of sensing devices, with a brand new chapter covering force and mass, followed by pressure, temperature, flow rate, and physico-chemical properties. It continues with chapters that describe how to measure gas and liquid concentrations, how to characterize solids, and finally a new chapter on spectroscopic techniques such as UV/Vis, IR, XRD, XPS, NMR, and XAS. Throughout the book, the author integrates the concepts of uncertainty, along with a historical context and practical examples.A problem solutions manual is available from the author upon request. - Includes the basics for 1st and 2nd year chemical engineers, providing a foundation for unit operations and transport phenomena - Features many practical examples - Offers exercises for students at the end of each chapter - Includes up-to-date detailed drawings and photos of equipment
Publisher: Elsevier
ISBN: 0444637923
Category : Science
Languages : en
Pages : 426
Book Description
Experimental Methods and Instrumentation for Chemical Engineers, Second Edition, touches many aspects of engineering practice, research, and statistics. The principles of unit operations, transport phenomena, and plant design constitute the focus of chemical engineering in the latter years of the curricula. Experimental methods and instrumentation is the precursor to these subjects. This resource integrates these concepts with statistics and uncertainty analysis to define what is necessary to measure and to control, how precisely and how often.The completely updated second edition is divided into several themes related to data: metrology, notions of statistics, and design of experiments. The book then covers basic principles of sensing devices, with a brand new chapter covering force and mass, followed by pressure, temperature, flow rate, and physico-chemical properties. It continues with chapters that describe how to measure gas and liquid concentrations, how to characterize solids, and finally a new chapter on spectroscopic techniques such as UV/Vis, IR, XRD, XPS, NMR, and XAS. Throughout the book, the author integrates the concepts of uncertainty, along with a historical context and practical examples.A problem solutions manual is available from the author upon request. - Includes the basics for 1st and 2nd year chemical engineers, providing a foundation for unit operations and transport phenomena - Features many practical examples - Offers exercises for students at the end of each chapter - Includes up-to-date detailed drawings and photos of equipment
Practical Experiment Designs
Author: William J. Diamond
Publisher: Wiley
ISBN: 9780471289715
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Publisher: Wiley
ISBN: 9780471289715
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Experimentation and Uncertainty Analysis for Engineers
Author: Hugh W. Coleman
Publisher: John Wiley & Sons
ISBN: 9780471121466
Category : Psychology
Languages : en
Pages : 298
Book Description
Now, in the only manual available with direct applications to the design and analysis of engineering experiments, respected authors Hugh Coleman and Glenn Steele have thoroughly updated their bestselling title to include the new methodologies being used by the United States and International standards committee groups.
Publisher: John Wiley & Sons
ISBN: 9780471121466
Category : Psychology
Languages : en
Pages : 298
Book Description
Now, in the only manual available with direct applications to the design and analysis of engineering experiments, respected authors Hugh Coleman and Glenn Steele have thoroughly updated their bestselling title to include the new methodologies being used by the United States and International standards committee groups.
Design of Experiments in Chemical Engineering
Author: Zivorad R. Lazic
Publisher: John Wiley & Sons
ISBN: 3527604596
Category : Science
Languages : en
Pages : 620
Book Description
While existing books related to DOE are focused either on process or mixture factors or analyze specific tools from DOE science, this text is structured both horizontally and vertically, covering the three most common objectives of any experimental research: * screening designs * mathematical modeling, and * optimization. Written in a simple and lively manner and backed by current chemical product studies from all around the world, the book elucidates basic concepts of statistical methods, experiment design and optimization techniques as applied to chemistry and chemical engineering. Throughout, the focus is on unifying the theory and methodology of optimization with well-known statistical and experimental methods. The author draws on his own experience in research and development, resulting in a work that will assist students, scientists and engineers in using the concepts covered here in seeking optimum conditions for a chemical system or process. With 441 tables, 250 diagrams, as well as 200 examples drawn from current chemical product studies, this is an invaluable and convenient source of information for all those involved in process optimization.
Publisher: John Wiley & Sons
ISBN: 3527604596
Category : Science
Languages : en
Pages : 620
Book Description
While existing books related to DOE are focused either on process or mixture factors or analyze specific tools from DOE science, this text is structured both horizontally and vertically, covering the three most common objectives of any experimental research: * screening designs * mathematical modeling, and * optimization. Written in a simple and lively manner and backed by current chemical product studies from all around the world, the book elucidates basic concepts of statistical methods, experiment design and optimization techniques as applied to chemistry and chemical engineering. Throughout, the focus is on unifying the theory and methodology of optimization with well-known statistical and experimental methods. The author draws on his own experience in research and development, resulting in a work that will assist students, scientists and engineers in using the concepts covered here in seeking optimum conditions for a chemical system or process. With 441 tables, 250 diagrams, as well as 200 examples drawn from current chemical product studies, this is an invaluable and convenient source of information for all those involved in process optimization.
Chaos Engineering
Author: Casey Rosenthal
Publisher: "O'Reilly Media, Inc."
ISBN: 1492043818
Category : Computers
Languages : en
Pages : 312
Book Description
As more companies move toward microservices and other distributed technologies, the complexity of these systems increases. You can't remove the complexity, but through Chaos Engineering you can discover vulnerabilities and prevent outages before they impact your customers. This practical guide shows engineers how to navigate complex systems while optimizing to meet business goals. Two of the field's prominent figures, Casey Rosenthal and Nora Jones, pioneered the discipline while working together at Netflix. In this book, they expound on the what, how, and why of Chaos Engineering while facilitating a conversation from practitioners across industries. Many chapters are written by contributing authors to widen the perspective across verticals within (and beyond) the software industry. Learn how Chaos Engineering enables your organization to navigate complexity Explore a methodology to avoid failures within your application, network, and infrastructure Move from theory to practice through real-world stories from industry experts at Google, Microsoft, Slack, and LinkedIn, among others Establish a framework for thinking about complexity within software systems Design a Chaos Engineering program around game days and move toward highly targeted, automated experiments Learn how to design continuous collaborative chaos experiments
Publisher: "O'Reilly Media, Inc."
ISBN: 1492043818
Category : Computers
Languages : en
Pages : 312
Book Description
As more companies move toward microservices and other distributed technologies, the complexity of these systems increases. You can't remove the complexity, but through Chaos Engineering you can discover vulnerabilities and prevent outages before they impact your customers. This practical guide shows engineers how to navigate complex systems while optimizing to meet business goals. Two of the field's prominent figures, Casey Rosenthal and Nora Jones, pioneered the discipline while working together at Netflix. In this book, they expound on the what, how, and why of Chaos Engineering while facilitating a conversation from practitioners across industries. Many chapters are written by contributing authors to widen the perspective across verticals within (and beyond) the software industry. Learn how Chaos Engineering enables your organization to navigate complexity Explore a methodology to avoid failures within your application, network, and infrastructure Move from theory to practice through real-world stories from industry experts at Google, Microsoft, Slack, and LinkedIn, among others Establish a framework for thinking about complexity within software systems Design a Chaos Engineering program around game days and move toward highly targeted, automated experiments Learn how to design continuous collaborative chaos experiments