Experimental, Theoretical, and Device Application Development of Nanoscale Focused Electron-beam-induced Deposition

Experimental, Theoretical, and Device Application Development of Nanoscale Focused Electron-beam-induced Deposition PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 200

Get Book Here

Book Description
To elucidate the effects of beam heating in electron beam-induced deposition (EBID), a Monte-Carlo electron-solid interaction model has been employed to calculate the energy deposition profiles in bulk and nanostructured SiO2. Using these profiles, a finite element model was used to predict the nanostructure tip temperatures for standard experimental EBID conditions. Depending on the beam energy, beam current, and nanostructure geometry, the heat generated can be substantial. This heat source can subsequently limit the EBID growth by thermally reducing the mean stay time of the precursor gas. Temperature dependent EBID growth experiments qualitatively verified the results of the electron beam-heating model. Additionally, experimental trends for the growth rate as a function of deposition time supported the conclusion that electron beam-induced heating can play a major role in limiting the EBID growth rate of SiO2 nanostructures. In an EBID application development, two approaches to maskless, direct-write lithography using electron beam-induced deposition (EBID) to produce ultra-thin masking layers were investigated. A single layer process used directly written SiO[subscript x] features deposited from a tetraethoxysilane (TEOS) precursor vapor as a masking layer for amorphous silicon thin films. A bilayer process implemented a secondary masking layer consisting of standard photoresist into which a pattern--directly written by EBID tungsten from WF6 precursor--was transferred. The single layer process was found to be extremely sensitive to the etch selectivity of the plasma etch. As a result, patterns were successfully transferred into silicon, but only to a minimal depth. In the bilayer process, EBID tungsten was written onto photoresist and the pattern transferred by means of an oxygen plasma dry development. A brief refractory descum plasma etch was implemented to remove the peripheral tungsten contamination prior to the development process. Conditions were developed to reduce the spatial spread of electrons in the photoresist layer and obtain minimal linewidths, which enabled patterning of [sim] 35 nm lines. Additionally, an EBID-based technique for field emitter repair was applied to the Digital Electrostatically focused e-beam Array Lithography (DEAL) parallel electron beam lithography configuration. Damaged or missing carbon nanofiber (CNF) emitters are very common in these prototype devices, so there is a need for a deterministic repair process. Relatively carbon-free, high aspect ratio tungsten nanofibers were deposited from a WF6 precursor in a gated cathode and a damaged triode (DEAL) device. The I-V response of the devices during vacuum FE testing indicated stable, cold field emission from the EBID cathodes. The field emission threshold voltage was shown to decrease from -130 V to -90 V after a short initiation period. Finally, lithography was performed using the repaired device to write a series of lines in PMMA with variable focus voltage. Successful focusing of the beam with increased focus voltage was evident in the patterned and developed PMMA. The I-V and lithography results were comparable to CNF-based DEAL devices indicating a successful repair technique.

Experimental, Theoretical, and Device Application Development of Nanoscale Focused Electron-beam-induced Deposition

Experimental, Theoretical, and Device Application Development of Nanoscale Focused Electron-beam-induced Deposition PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 200

Get Book Here

Book Description
To elucidate the effects of beam heating in electron beam-induced deposition (EBID), a Monte-Carlo electron-solid interaction model has been employed to calculate the energy deposition profiles in bulk and nanostructured SiO2. Using these profiles, a finite element model was used to predict the nanostructure tip temperatures for standard experimental EBID conditions. Depending on the beam energy, beam current, and nanostructure geometry, the heat generated can be substantial. This heat source can subsequently limit the EBID growth by thermally reducing the mean stay time of the precursor gas. Temperature dependent EBID growth experiments qualitatively verified the results of the electron beam-heating model. Additionally, experimental trends for the growth rate as a function of deposition time supported the conclusion that electron beam-induced heating can play a major role in limiting the EBID growth rate of SiO2 nanostructures. In an EBID application development, two approaches to maskless, direct-write lithography using electron beam-induced deposition (EBID) to produce ultra-thin masking layers were investigated. A single layer process used directly written SiO[subscript x] features deposited from a tetraethoxysilane (TEOS) precursor vapor as a masking layer for amorphous silicon thin films. A bilayer process implemented a secondary masking layer consisting of standard photoresist into which a pattern--directly written by EBID tungsten from WF6 precursor--was transferred. The single layer process was found to be extremely sensitive to the etch selectivity of the plasma etch. As a result, patterns were successfully transferred into silicon, but only to a minimal depth. In the bilayer process, EBID tungsten was written onto photoresist and the pattern transferred by means of an oxygen plasma dry development. A brief refractory descum plasma etch was implemented to remove the peripheral tungsten contamination prior to the development process. Conditions were developed to reduce the spatial spread of electrons in the photoresist layer and obtain minimal linewidths, which enabled patterning of [sim] 35 nm lines. Additionally, an EBID-based technique for field emitter repair was applied to the Digital Electrostatically focused e-beam Array Lithography (DEAL) parallel electron beam lithography configuration. Damaged or missing carbon nanofiber (CNF) emitters are very common in these prototype devices, so there is a need for a deterministic repair process. Relatively carbon-free, high aspect ratio tungsten nanofibers were deposited from a WF6 precursor in a gated cathode and a damaged triode (DEAL) device. The I-V response of the devices during vacuum FE testing indicated stable, cold field emission from the EBID cathodes. The field emission threshold voltage was shown to decrease from -130 V to -90 V after a short initiation period. Finally, lithography was performed using the repaired device to write a series of lines in PMMA with variable focus voltage. Successful focusing of the beam with increased focus voltage was evident in the patterned and developed PMMA. The I-V and lithography results were comparable to CNF-based DEAL devices indicating a successful repair technique.

Nanofabrication Using Focused Ion and Electron Beams

Nanofabrication Using Focused Ion and Electron Beams PDF Author: Ivo Utke
Publisher: Oxford University Press
ISBN: 0199920990
Category : Technology & Engineering
Languages : en
Pages : 830

Get Book Here

Book Description
Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.

Advanced Focused Beam-induced Processing for Nanoscale Synthesis and 2D Materials Device Architectures

Advanced Focused Beam-induced Processing for Nanoscale Synthesis and 2D Materials Device Architectures PDF Author: Michael Garrison Stanford
Publisher:
ISBN:
Category : Focused ion beams
Languages : en
Pages : 272

Get Book Here

Book Description
Nanofabrication has come to prominence over recent years due to miniaturization of electronic devices as well as interesting physical phenomena that arise in material systems at the nanoscale. Particle beam induced processing enables additive as well as subtractive nanoprocessing techniques. Focused beam induced processing facilitates direct-write processing, thus making it a common technique for fabrication and synthesis on the nanoscale and is typically carried out with charged particles such as electrons or ion species, each of which offer distinct capabilities. This dissertation addresses several challenges which currently plague the focused beam-induced processing community and explores novel applications. Chapter I explores laser based purification strategies for electron beam induced deposition. This addresses the challenge of material purity, which currently limits broader application of the nanofabrication technique. Chapter II covers advanced helium ion beam induced processing using a Gas Field Ionization source. This chapter explores novel applications for the helium ion beam as well as the mitigation of helium-induced subsurface damage, which currently prevents ubiquitous adoption of the helium ion microscope as a nanofabrication tool. Chapter III studies defect introduction in 2D materials under helium ion irradiation, which proves to be an ideal nanoprocessing application for the helium ion beam.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 994

Get Book Here

Book Description


Elucidating the Growth Mechanisms of Electron Beam Induced Deposition Via a Three Demensional, Monte-Carlo Based Simulation

Elucidating the Growth Mechanisms of Electron Beam Induced Deposition Via a Three Demensional, Monte-Carlo Based Simulation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 234

Get Book Here

Book Description
The rapid and precise direct-write growth of nanoscale features by electron-beaminduced deposition (EBID) and etching (EBIE) requires the optimization of the growth parameters to maintain nanoscale feature dimensions. The tremendous and complex EBID parameter space includes the precursor gas pressure, the primary electron beam energy, the electron beam current, surface diffusion rates of adsorbed precursor species, thermal effects on desorption, and the cascade of electron species produced by elastic and inelastic scattering processes. These variables determine the feature growth velocity and the size of the structure through a series of complex, coupled nonlinear interactions. A dynamic computer simulation based on Monte-Carlo calculation sequences was created to aide in the interpretation of experimental observations by simulating experimental EBID growth conditions for a nanoscale stationary and scanned electron beam with properties characteristic of a conventional SEM. In this dissertation, initially the Monte Carlo EBID simulation details are presented. Subsequently, four specific case studies are simulated. The details of the mechanisms and electron types responsible for vertical and lateral growth are presented. Initially, EBID growth was compared in a reaction rate limited regime at different beam energies (1keV versus 5keV). This yielded lower growth rates at higher energy due to a combination of variables, including a lower dissociation cross section and a decreased secondary electron coefficient. Second, reaction rate versus mass transport limited growth of tungsten from a WF6 precursor was studied, and the lateral broadening associated with mass transport limited growth was elucidated. Third, a study was performed to determine the effects of precursor surface diffusion on pillar growth rates and morphology. The changes were attributed to a shift in the otherwise mass transport limited growth with no surface diffusion to a pseudo reaction rate limited growth when the surface diffusion coefficient was sufficiently high. Fourth, two different materials were simulated and compared: tungsten from WF6, and SiO2 from Si(OC2H5)4. The different growth rates and pillar morphology correlated to the different dissociation cross sections, secondary electron yields, and the electron range, respectively. Sample applications of the simulation are provided, including rastered depositions, via filling, and duplication of "volcano-like" structures.

Advanced Purification and Direct-write 3D Nanoprinting Via Focused Electron Beam Induced Deposition

Advanced Purification and Direct-write 3D Nanoprinting Via Focused Electron Beam Induced Deposition PDF Author: Brett Bloxton Lewis
Publisher:
ISBN:
Category : Electron beams
Languages : en
Pages : 141

Get Book Here

Book Description
This dissertation addresses three difficulties with focused electron beam induced deposition preventing broader application; purity, spatial control, and mechanical characterization. Focused electron beam induced deposition (FEBID) has many advantages as a nanoscale fabrication tool. It is compatible for implementation into current lithographic techniques and has the potential to direct-write in a single step nanostructures of a high degree of complexity. FEBID is a very versatile tool capable of fabricating structures of many different compositions ranging from insulating oxides to conducting metals. Due to the complexity of the technique and the difficulty in directly measuring many important variables, FEBID has remained a niche technique for nanoscale fabrication and prototyping. The Achilles heel of FEBID is that, with few exceptions, the resultant structures are riddled with impurities. Also, the use of FEBID as a nanoscale 3D printing tool is limited and has historically been approached from a trial and error point of view To address these issues, we have developed an advanced low-temperature purification method through a post process involving the electron stimulated reaction of O2 and carbon contaminates. This method is discussed in Chapter 1. We have investigated parameters involved in three dimensional FEBID, demonstrating control over those parameters to produce predicable shapes with high precision and complexity as described in Chapter 2. It is non-trivial to purify simultaneous during 3D printing, and so we have studied and developed a method to accomplish that using an in situ pulsed laser thermal anneal. Chapter 3 demonstrates this fully in situ 3D purification process. Finally, for emerging applications it will be important to know the mechanical properties of intricate structures created through FEBID. To this end, we have developed a method for the mechanical characterization of 3D nanostructures fabricated using FEBID. The mechanical characterization process, tools, and results are detailed in Chapter 4.

Advances in Imaging and Electron Physics Including Proceedings CPO-10

Advances in Imaging and Electron Physics Including Proceedings CPO-10 PDF Author:
Publisher: Academic Press
ISBN: 0128174765
Category : Technology & Engineering
Languages : en
Pages : 376

Get Book Here

Book Description
Advances in Imaging and Electron Physics, Volume 212, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Contains contributions from leading authorities on the subject matter Informs and updates on the latest developments in the field of imaging and electron physics Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electrons and ion emission with a valuable resource Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing

Nanofabrication

Nanofabrication PDF Author: Ampere A. Tseng
Publisher: World Scientific
ISBN: 9812790896
Category : Technology & Engineering
Languages : en
Pages : 583

Get Book Here

Book Description
Many of the devices and systems used in modern industry are becoming progressively smaller and have reached the nanoscale domain. Nanofabrication aims at building nanoscale structures, which can act as components, devices, or systems, in large quantities at potentially low cost. Nanofabrication is vital to all nanotechnology fields, especially for the realization of nanotechnology that involves the traditional areas across engineering and science. This is the first book solely dedicated to the manufacturing technology in nanoscale structures, devices, and systems and is designed to satisfy the growing demands of researchers, professionals, and graduate students. Both conventional and non-conventional fabrication technologies are introduced with emphasis on multidisciplinary principles, methodologies, and practical applications. While conventional technologies consider the emerging techniques developed for next generation lithography, non-conventional techniques include scanning probe microscopy lithography, self-assembly, and imprint lithography, as well as techniques specifically developed for making carbon tubes and molecular circuits and devices. Sample Chapter(s). Chapter 1: Atom, Molecule, and Nanocluster Manipulations for Nanostructure Fabrication Using Scanning Probe Microscopy (3,320 KB). Contents: Atomic Force Microscope Lithography (N Kawasegi et al.); Nanowire Assembly and Integration (Z Gu & D H Gracias); Extreme Ultraviolet Lithography (H Kinoshita); Electron Projection Lithography (T Miura et al.); Electron Beam Direct Writing (K Yamazaki); Electron Beam Induced Deposition (K Mitsuishi); Focused Ion Beams and Interaction with Solids (T Ishitani et al.); Nanofabrication of Nanoelectromechanical Systems (NEMS): Emerging Techniques (K L Ekinci & J Brugger); and other papers. Readership: Researchers, professionals, and graduate students in the fields of nanoengineering and nanoscience.

Liquid Cell Electron Microscopy

Liquid Cell Electron Microscopy PDF Author: Frances M. Ross
Publisher: Cambridge University Press
ISBN: 1107116570
Category : Science
Languages : en
Pages : 529

Get Book Here

Book Description
2.6.2 Electrodes for Electrochemistry

Nanofluidics and Microfluidics

Nanofluidics and Microfluidics PDF Author: Shaurya Prakash
Publisher: William Andrew
ISBN: 1437744702
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
To provide an interdisciplinary readership with the necessary toolkit to work with micro- and nanofluidics, this book provides basic theory, fundamentals of microfabrication, advanced fabrication methods, device characterization methods and detailed examples of applications of nanofluidics devices and systems. Case studies describing fabrication of complex micro- and nanoscale systems help the reader gain a practical understanding of developing and fabricating such systems. The resulting work covers the fundamentals, processes and applied challenges of functional engineered nanofluidic systems for a variety of different applications, including discussions of lab-on-chip, bio-related applications and emerging technologies for energy and environmental engineering. The fundamentals of micro- and nanofluidic systems and micro- and nanofabrication techniques provide readers from a variety of academic backgrounds with the understanding required to develop new systems and applications. Case studies introduce and illustrate state-of-the-art applications across areas, including lab-on-chip, energy and bio-based applications. Prakash and Yeom provide readers with an essential toolkit to take micro- and nanofluidic applications out of the research lab and into commercial and laboratory applications.