Author: Mark C. M. van Loosdrecht
Publisher: IWA Publishing
ISBN: 1780404743
Category : Science
Languages : en
Pages : 362
Book Description
Over the past twenty years, the knowledge and understanding of wastewater treatment has advanced extensively and moved away from empirically based approaches to a fundamentally-based first principles approach embracing chemistry, microbiology, and physical and bioprocess engineering, often involving experimental laboratory work and techniques. Many of these experimental methods and techniques have matured to the degree that they have been accepted as reliable tools in wastewater treatment research and practice. For sector professionals, especially a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access to advanced level laboratory courses in wastewater treatment is not readily available. In addition, information on innovative experimental methods is scattered across scientific literature and only partially available in the form of textbooks or guidelines. This book seeks to address these deficiencies. It assembles and integrates the innovative experimental methods developed by research groups and practitioners around the world. Experimental Methods in Wastewater Treatment forms part of the internet-based curriculum in wastewater treatment at UNESCO-IHE and, as such, may also be used together with video records of experimental methods performed and narrated by the authors including guidelines on what to do and what not to do. The book is written for undergraduate and postgraduate students, researchers, laboratory staff, plant operators, consultants, and other sector professionals.
Experimental Methods in Wastewater Treatment
Author: Mark C. M. van Loosdrecht
Publisher: IWA Publishing
ISBN: 1780404743
Category : Science
Languages : en
Pages : 362
Book Description
Over the past twenty years, the knowledge and understanding of wastewater treatment has advanced extensively and moved away from empirically based approaches to a fundamentally-based first principles approach embracing chemistry, microbiology, and physical and bioprocess engineering, often involving experimental laboratory work and techniques. Many of these experimental methods and techniques have matured to the degree that they have been accepted as reliable tools in wastewater treatment research and practice. For sector professionals, especially a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access to advanced level laboratory courses in wastewater treatment is not readily available. In addition, information on innovative experimental methods is scattered across scientific literature and only partially available in the form of textbooks or guidelines. This book seeks to address these deficiencies. It assembles and integrates the innovative experimental methods developed by research groups and practitioners around the world. Experimental Methods in Wastewater Treatment forms part of the internet-based curriculum in wastewater treatment at UNESCO-IHE and, as such, may also be used together with video records of experimental methods performed and narrated by the authors including guidelines on what to do and what not to do. The book is written for undergraduate and postgraduate students, researchers, laboratory staff, plant operators, consultants, and other sector professionals.
Publisher: IWA Publishing
ISBN: 1780404743
Category : Science
Languages : en
Pages : 362
Book Description
Over the past twenty years, the knowledge and understanding of wastewater treatment has advanced extensively and moved away from empirically based approaches to a fundamentally-based first principles approach embracing chemistry, microbiology, and physical and bioprocess engineering, often involving experimental laboratory work and techniques. Many of these experimental methods and techniques have matured to the degree that they have been accepted as reliable tools in wastewater treatment research and practice. For sector professionals, especially a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access to advanced level laboratory courses in wastewater treatment is not readily available. In addition, information on innovative experimental methods is scattered across scientific literature and only partially available in the form of textbooks or guidelines. This book seeks to address these deficiencies. It assembles and integrates the innovative experimental methods developed by research groups and practitioners around the world. Experimental Methods in Wastewater Treatment forms part of the internet-based curriculum in wastewater treatment at UNESCO-IHE and, as such, may also be used together with video records of experimental methods performed and narrated by the authors including guidelines on what to do and what not to do. The book is written for undergraduate and postgraduate students, researchers, laboratory staff, plant operators, consultants, and other sector professionals.
Biofilms in Wastewater Treatment
Author: Stefan Wuertz
Publisher: IWA Publishing
ISBN: 1843390078
Category : Science
Languages : en
Pages : 425
Book Description
The central theme of the book is the flow of information from experimental approaches in biofilm research to simulation and modeling of complex wastewater systems. Probably the greatest challenge in wastewater research lies in using the methods and the results obtained in one scientific discipline to design intelligent experiments in other disciplines, and eventually to improve the knowledge base the practitioner needs to run wastewater treatment plants. The purpose of Biofilms in Wastewater Treatment is to provide engineers with the knowledge needed to apply the new insights gained by researchers. The authors provide an authoritative insight into the function of biofilms on a technical and on a lab-scale, cover some of the exciting new basic microbiological and wastewater engineering research involving molecular biology techniques and microscopy, and discuss recent attempts to predict the development of biofilms. This book is divided into 3 sections: Modeling and Simulation; Architecture, Population Structure and Function; and From Fundamentals to Practical Application, which all start with a scientific question. Individual chapters attempt to answer the question and present different angles of looking at problems. In addition there is an extensive glossary to familiarize the non-expert with unfamiliar terminology used by microbiologists and computational scientists. The colour plate section of this book can be downloaded by clicking here. (PDF Format 1 MB)
Publisher: IWA Publishing
ISBN: 1843390078
Category : Science
Languages : en
Pages : 425
Book Description
The central theme of the book is the flow of information from experimental approaches in biofilm research to simulation and modeling of complex wastewater systems. Probably the greatest challenge in wastewater research lies in using the methods and the results obtained in one scientific discipline to design intelligent experiments in other disciplines, and eventually to improve the knowledge base the practitioner needs to run wastewater treatment plants. The purpose of Biofilms in Wastewater Treatment is to provide engineers with the knowledge needed to apply the new insights gained by researchers. The authors provide an authoritative insight into the function of biofilms on a technical and on a lab-scale, cover some of the exciting new basic microbiological and wastewater engineering research involving molecular biology techniques and microscopy, and discuss recent attempts to predict the development of biofilms. This book is divided into 3 sections: Modeling and Simulation; Architecture, Population Structure and Function; and From Fundamentals to Practical Application, which all start with a scientific question. Individual chapters attempt to answer the question and present different angles of looking at problems. In addition there is an extensive glossary to familiarize the non-expert with unfamiliar terminology used by microbiologists and computational scientists. The colour plate section of this book can be downloaded by clicking here. (PDF Format 1 MB)
Dynamical Modelling & Estimation in Wastewater Treatment Processes
Author: D. Dochain
Publisher: IWA Publishing
ISBN: 9781900222501
Category : Science
Languages : en
Pages : 360
Book Description
Environmental quality is becoming an increasing concern in our society. In that context, waste and wastewater treatment, and more specifically biological wastewater treatment processes play an important role. In this book, we concentrate on the mathematical modelling of these processes. The main purpose is to provide the increasing number of professionals who are using models to design, optimise and control wastewater treatment processes with the necessary background for their activities of model building, selection and calibration. The book deals specifically with dynamic models because they allow us to describe the behaviour of treatment plants under the highly dynamic conditions that we want them to operate (e.g. Sequencing Batch Reactors) or we have to operate them (e.g. storm conditions, spills). Further extension is provided to new reactor systems for which partial differential equation descriptions are necessary to account for their distributed parameter nature (e.g. settlers, fixed bed reactors). The model building exercise is introduced as a step-wise activity that, in this book, starts from mass balancing principles. In many cases, different hypotheses and their corresponding models can be proposed for a particular process. It is therefore essential to be able to select from these candidate models in an objective manner. To this end, structure characterisation methods are introduced. Important sections of the book deal with the collection of high quality data using optimal experimental design, parameter estimation techniques for calibration and the on-line use of models in state and parameter estimators. Contents Dynamical Modelling Dynamical Mass Balance Model Building and Analysis Structure Characterisation (SC) Structural Identifiability Practical Identifiability and Optimal Experiment Design for Parameter Estimation (OED/PE) Estimation of Model Parameters Recursive State and Parameter Estimation Glossary Nomenclature
Publisher: IWA Publishing
ISBN: 9781900222501
Category : Science
Languages : en
Pages : 360
Book Description
Environmental quality is becoming an increasing concern in our society. In that context, waste and wastewater treatment, and more specifically biological wastewater treatment processes play an important role. In this book, we concentrate on the mathematical modelling of these processes. The main purpose is to provide the increasing number of professionals who are using models to design, optimise and control wastewater treatment processes with the necessary background for their activities of model building, selection and calibration. The book deals specifically with dynamic models because they allow us to describe the behaviour of treatment plants under the highly dynamic conditions that we want them to operate (e.g. Sequencing Batch Reactors) or we have to operate them (e.g. storm conditions, spills). Further extension is provided to new reactor systems for which partial differential equation descriptions are necessary to account for their distributed parameter nature (e.g. settlers, fixed bed reactors). The model building exercise is introduced as a step-wise activity that, in this book, starts from mass balancing principles. In many cases, different hypotheses and their corresponding models can be proposed for a particular process. It is therefore essential to be able to select from these candidate models in an objective manner. To this end, structure characterisation methods are introduced. Important sections of the book deal with the collection of high quality data using optimal experimental design, parameter estimation techniques for calibration and the on-line use of models in state and parameter estimators. Contents Dynamical Modelling Dynamical Mass Balance Model Building and Analysis Structure Characterisation (SC) Structural Identifiability Practical Identifiability and Optimal Experiment Design for Parameter Estimation (OED/PE) Estimation of Model Parameters Recursive State and Parameter Estimation Glossary Nomenclature
Wastewater Treatment Reactors
Author: Maulin P. Shah
Publisher: Elsevier
ISBN: 0128242442
Category : Technology & Engineering
Languages : en
Pages : 646
Book Description
Wastewater Treatment Reactors: Microbial Community Structure analyzes microbial community structure in relation to changes in physico-chemical parameters, the gene content (metagenome) or gene expression (metatranscriptome) of microbial communities in relation to changes in physico-chemical parameters, physiological aspects of microbial communities, enrichment cultures or pure cultures of key species in relation to changes in physico-chemical parameters, and modeling of potential consequences of changes in microbial community structure or function for higher trophic levels in a given habitat. As several studies have been carried out to understand bulking phenomena and the importance of environmental factors on sludge settling characteristics, which are thought to be strongly influenced by flocculation, sludge bulking, foaming and rising, this book is an ideal resource on the topics covered. - Presents the state-of-the-art techniques and applications of omics tools in wastewater treatment reactors (WWTRs) - Describes both theoretical and practical knowledge surrounding the fundamental roles of microorganisms in WWTRs - Points out the reuse of treated wastewater through emerging technologies - Covers the economics of wastewater treatment and the development of suitable alternatives in terms of performance and cost effectiveness - Discusses cutting-edge molecular biological tools - Gives in-depth knowledge to study microbial community structure and function in wastewater treatment reactors
Publisher: Elsevier
ISBN: 0128242442
Category : Technology & Engineering
Languages : en
Pages : 646
Book Description
Wastewater Treatment Reactors: Microbial Community Structure analyzes microbial community structure in relation to changes in physico-chemical parameters, the gene content (metagenome) or gene expression (metatranscriptome) of microbial communities in relation to changes in physico-chemical parameters, physiological aspects of microbial communities, enrichment cultures or pure cultures of key species in relation to changes in physico-chemical parameters, and modeling of potential consequences of changes in microbial community structure or function for higher trophic levels in a given habitat. As several studies have been carried out to understand bulking phenomena and the importance of environmental factors on sludge settling characteristics, which are thought to be strongly influenced by flocculation, sludge bulking, foaming and rising, this book is an ideal resource on the topics covered. - Presents the state-of-the-art techniques and applications of omics tools in wastewater treatment reactors (WWTRs) - Describes both theoretical and practical knowledge surrounding the fundamental roles of microorganisms in WWTRs - Points out the reuse of treated wastewater through emerging technologies - Covers the economics of wastewater treatment and the development of suitable alternatives in terms of performance and cost effectiveness - Discusses cutting-edge molecular biological tools - Gives in-depth knowledge to study microbial community structure and function in wastewater treatment reactors
Methods for Faecal Sludge Analysis
Author: Konstantina Velkushanova
Publisher: IWA Publishing
ISBN: 9781780409115
Category : Science
Languages : en
Pages : 350
Book Description
The importance and need for faecal sludge management has been recognised worldwide. One major gap in developing appropriate and adequate faecal sludge treatment and monitoring techniques is the ability to understand faecal sludge characteristics, its quantification and correlation to source populations. Faecal sludge characteristics are highly variable, but as standard methods for sampling and analysis do not exist, results are not comparable and hence the actual variability is not yet fully understood. Due to the lack of standard methods for sampling and analysis of faecal sludge, standard methods from other fields such as water, wastewater and soil science are usually applied. However, these methods are not necessarily the most suitable for faecal sludge, and have not been specifically adapted for that purpose. Characteristics of faecal sludge are typically different from these other matrices by orders of magnitude. The methods for faecal sludge sampling are also greatly complicated by the wide range of technologies in each local context, and the heterogeneity within systems. Another gap in existing knowledge is how to quantify faecal sludge on a city-wide scale, or scale relevant for the design of treatment technologies. Moreover, the lack of standardisation complicates the transfer of knowledge and data between different regions and institutions as the results are not comparable. This illustrates the urgent need to establish common methods and procedures for faecal sludge characterisation and quantification. This book aims to address these challenges and provide a basis towards standardized methods for characterisation and quantification of faecal sludge from onsite sanitation technologies, including sampling techniques and health and safety procedures for faecal sludge handling. It also aims at improved communication between sanitation practitioners, comparative faecal sludge database and improved confidence in the methods and obtained results. The book will be beneficial for researchers, laboratory technicians, academics, students and sanitation practitioners.
Publisher: IWA Publishing
ISBN: 9781780409115
Category : Science
Languages : en
Pages : 350
Book Description
The importance and need for faecal sludge management has been recognised worldwide. One major gap in developing appropriate and adequate faecal sludge treatment and monitoring techniques is the ability to understand faecal sludge characteristics, its quantification and correlation to source populations. Faecal sludge characteristics are highly variable, but as standard methods for sampling and analysis do not exist, results are not comparable and hence the actual variability is not yet fully understood. Due to the lack of standard methods for sampling and analysis of faecal sludge, standard methods from other fields such as water, wastewater and soil science are usually applied. However, these methods are not necessarily the most suitable for faecal sludge, and have not been specifically adapted for that purpose. Characteristics of faecal sludge are typically different from these other matrices by orders of magnitude. The methods for faecal sludge sampling are also greatly complicated by the wide range of technologies in each local context, and the heterogeneity within systems. Another gap in existing knowledge is how to quantify faecal sludge on a city-wide scale, or scale relevant for the design of treatment technologies. Moreover, the lack of standardisation complicates the transfer of knowledge and data between different regions and institutions as the results are not comparable. This illustrates the urgent need to establish common methods and procedures for faecal sludge characterisation and quantification. This book aims to address these challenges and provide a basis towards standardized methods for characterisation and quantification of faecal sludge from onsite sanitation technologies, including sampling techniques and health and safety procedures for faecal sludge handling. It also aims at improved communication between sanitation practitioners, comparative faecal sludge database and improved confidence in the methods and obtained results. The book will be beneficial for researchers, laboratory technicians, academics, students and sanitation practitioners.
Modelling in the Technology of Wastewater Treatment
Author: Imre Horváth
Publisher: Elsevier
ISBN: 1483188965
Category : Technology & Engineering
Languages : en
Pages : 215
Book Description
Modeling in the Technology of Wastewater Treatment discusses the application of scale-up methods, similarity theory approaches, and dimensional analysis to problems of wastewater treatment. The book first introduces the formulation of the problems, and then proceeds to reviewing literatures that tackle the subject matter. In the third chapter, the text discusses the applications of similitude in activated sludge system. The text then details the concept of economic similarity. The book will be of great use to scientists, engineers, and technicians involved in water sanitation process.
Publisher: Elsevier
ISBN: 1483188965
Category : Technology & Engineering
Languages : en
Pages : 215
Book Description
Modeling in the Technology of Wastewater Treatment discusses the application of scale-up methods, similarity theory approaches, and dimensional analysis to problems of wastewater treatment. The book first introduces the formulation of the problems, and then proceeds to reviewing literatures that tackle the subject matter. In the third chapter, the text discusses the applications of similitude in activated sludge system. The text then details the concept of economic similarity. The book will be of great use to scientists, engineers, and technicians involved in water sanitation process.
Biological Wastewater Treatment
Author: Mogens Henze
Publisher: IWA Publishing (International Water Assoc)
ISBN:
Category : Science
Languages : en
Pages : 170
Book Description
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.
Publisher: IWA Publishing (International Water Assoc)
ISBN:
Category : Science
Languages : en
Pages : 170
Book Description
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.
Practical Wastewater Treatment
Author: David L. Russell
Publisher: John Wiley & Sons
ISBN: 0470067918
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
Practical techniques for handling industrial waste and designing treatment facilities Practical Wastewater Treatment is designed as a teaching and training tool for chemical, civil, and environmental engineers. Based on an AIChE training course, developed and taught by the author, this manual equips readers with the skills and knowledge needed to design a wastewater treatment plant and handle various types of industrial wastes. With its emphasis on design issues and practical considerations, the manual enables readers to master treatment techniques for managing a wide range of industrial wastes, including oil, blood and protein, milk, plating, refinery, and phenolic and chemical plant wastes. A key topic presented in the manual is biological modeling for designing wastewater treatment plants. The author demonstrates how these models lead to both more efficient and more economical plants. As a practical training tool, this manual contains a number of features to assist readers in tackling complex, real-world problems, including: * Examples and worked problems throughout the manual demonstrate how various treatment plants and treatment techniques work * Figures and diagrams help readers visualize and understand complex design issues * References as well as links to online resources serve as a gateway to additional information * Practical design hints, stemming from the author's extensive experience, help readers save time and avoid unwanted and expensive pitfalls * Clear and logically organized presentation has been developed and refined based on an AIChE course taught by the author in the United States, Mexico, and Venezuela Whether a novice or experienced practitioner, any engineer who deals with the treatment of industrial waste will find a myriad of practical advice and useful techniques that they can immediately apply to solve problems in wastewater treatment.
Publisher: John Wiley & Sons
ISBN: 0470067918
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
Practical techniques for handling industrial waste and designing treatment facilities Practical Wastewater Treatment is designed as a teaching and training tool for chemical, civil, and environmental engineers. Based on an AIChE training course, developed and taught by the author, this manual equips readers with the skills and knowledge needed to design a wastewater treatment plant and handle various types of industrial wastes. With its emphasis on design issues and practical considerations, the manual enables readers to master treatment techniques for managing a wide range of industrial wastes, including oil, blood and protein, milk, plating, refinery, and phenolic and chemical plant wastes. A key topic presented in the manual is biological modeling for designing wastewater treatment plants. The author demonstrates how these models lead to both more efficient and more economical plants. As a practical training tool, this manual contains a number of features to assist readers in tackling complex, real-world problems, including: * Examples and worked problems throughout the manual demonstrate how various treatment plants and treatment techniques work * Figures and diagrams help readers visualize and understand complex design issues * References as well as links to online resources serve as a gateway to additional information * Practical design hints, stemming from the author's extensive experience, help readers save time and avoid unwanted and expensive pitfalls * Clear and logically organized presentation has been developed and refined based on an AIChE course taught by the author in the United States, Mexico, and Venezuela Whether a novice or experienced practitioner, any engineer who deals with the treatment of industrial waste will find a myriad of practical advice and useful techniques that they can immediately apply to solve problems in wastewater treatment.
Watershed Management for Potable Water Supply
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309172683
Category : Nature
Languages : en
Pages : 569
Book Description
In 1997, New York City adopted a mammoth watershed agreement to protect its drinking water and avoid filtration of its large upstate surface water supply. Shortly thereafter, the NRC began an analysis of the agreement's scientific validity. The resulting book finds New York City's watershed agreement to be a good template for proactive watershed management that, if properly implemented, will maintain high water quality. However, it cautions that the agreement is not a guarantee of permanent filtration avoidance because of changing regulations, uncertainties regarding pollution sources, advances in treatment technologies, and natural variations in watershed conditions. The book recommends that New York City place its highest priority on pathogenic microorganisms in the watershed and direct its resources toward improving methods for detecting pathogens, understanding pathogen transport and fate, and demonstrating that best management practices will remove pathogens. Other recommendations, which are broadly applicable to surface water supplies across the country, target buffer zones, stormwater management, water quality monitoring, and effluent trading.
Publisher: National Academies Press
ISBN: 0309172683
Category : Nature
Languages : en
Pages : 569
Book Description
In 1997, New York City adopted a mammoth watershed agreement to protect its drinking water and avoid filtration of its large upstate surface water supply. Shortly thereafter, the NRC began an analysis of the agreement's scientific validity. The resulting book finds New York City's watershed agreement to be a good template for proactive watershed management that, if properly implemented, will maintain high water quality. However, it cautions that the agreement is not a guarantee of permanent filtration avoidance because of changing regulations, uncertainties regarding pollution sources, advances in treatment technologies, and natural variations in watershed conditions. The book recommends that New York City place its highest priority on pathogenic microorganisms in the watershed and direct its resources toward improving methods for detecting pathogens, understanding pathogen transport and fate, and demonstrating that best management practices will remove pathogens. Other recommendations, which are broadly applicable to surface water supplies across the country, target buffer zones, stormwater management, water quality monitoring, and effluent trading.
Industrial Wastewater Treatment by Activated Sludge
Author: Derin Orhon
Publisher: IWA Publishing
ISBN: 1843391449
Category : Science
Languages : en
Pages : 405
Book Description
Industrial pollution is still a major concern and despite its significance, sound and systematic pollution control efforts are very poorly documented. The character and treatability of industrial wastewaters is highly variable and specific for each industrial activity. Biological treatment with activated sludge is the appropriate technology for industrial wastewaters from several major industrial sectors. Industrial Wastewater Treatment by Activated Sludge deals with the activated sludge treatment of industrial wastewaters by considering conceptual frameworks, methodologies and case studies, in a stepwise manner. The issues related to activated sludge treatment, such as biodegradability based characterization, modeling, assessment of stoichiometric and kinetic parameters and design, as well as the issues of industrial pollution control, e.g. in-plant control, effect of pretreatment, etc. are combined in a way to provide a comprehensive and information-rich view to the reader. By doing so, the book supplies an up-to-date reference for industrial wastewater experts and both graduate and undergraduate students. Industrial Wastewater Treatment by Activated Sludge provides a roadmap, describing the methodologies for the treatment of industrial wastewaters from several major sectors, based on a solid theoretical background. Up to now although valuable separate efforts both on activated sludge and industrial wastewater treatment have been presented, an integrated approach that is crucial to practice has not been available. This gap is filled by this book.
Publisher: IWA Publishing
ISBN: 1843391449
Category : Science
Languages : en
Pages : 405
Book Description
Industrial pollution is still a major concern and despite its significance, sound and systematic pollution control efforts are very poorly documented. The character and treatability of industrial wastewaters is highly variable and specific for each industrial activity. Biological treatment with activated sludge is the appropriate technology for industrial wastewaters from several major industrial sectors. Industrial Wastewater Treatment by Activated Sludge deals with the activated sludge treatment of industrial wastewaters by considering conceptual frameworks, methodologies and case studies, in a stepwise manner. The issues related to activated sludge treatment, such as biodegradability based characterization, modeling, assessment of stoichiometric and kinetic parameters and design, as well as the issues of industrial pollution control, e.g. in-plant control, effect of pretreatment, etc. are combined in a way to provide a comprehensive and information-rich view to the reader. By doing so, the book supplies an up-to-date reference for industrial wastewater experts and both graduate and undergraduate students. Industrial Wastewater Treatment by Activated Sludge provides a roadmap, describing the methodologies for the treatment of industrial wastewaters from several major sectors, based on a solid theoretical background. Up to now although valuable separate efforts both on activated sludge and industrial wastewater treatment have been presented, an integrated approach that is crucial to practice has not been available. This gap is filled by this book.