Experimental Method for Correcting Nozzle Afterbody Drag for the Effects of Jet Temperature

Experimental Method for Correcting Nozzle Afterbody Drag for the Effects of Jet Temperature PDF Author: W. L. Peters
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 50

Get Book Here

Book Description
The objective of this investigation was to isolate those parameters defined as jet mixing effects on afterbody drag in an effort to develop a method of correcting or simulating the effects of jet temperature in wind tunnel experiments. Data used in the investigation were obtained from experiments conducted in the AEDC Aerodynamic Wind Tunnel (1T) with a strut-mounted model at free-stream Mach numbers from 0.6 to 1.2. Integrated afterbody pressure drag coefficient data were acquired for three nozzle area ratios (1.0, 1.24, and 2.96) using various unheated jet exhaust gas compositions that allowed a variation in gas constant from 55 to 767 ft/lbf/lbm-deg R. Jet mixing effects on afterbody drag coefficient produced by varying jet gas constant and nozzle area ratio at nozzle design pressure ratio, and the drag effects resulting from variations in nozzle pressure ratio at certain overexpanded jet conditions were observed to be similar functions of mass flux ratio. A simple experimental method has been proposed to allow corrections of afterbody drag coefficient data obtained in the wind tunnel (using an ambient temperature air jet) for the effects of jet gas constant. By inference, a similar drag correction can be obtained for the combined effect of gas constant and temperature, assuming their product defines the effects on drag produced by variations in either property. (Author).

Experimental Method for Correcting Nozzle Afterbody Drag for the Effects of Jet Temperature

Experimental Method for Correcting Nozzle Afterbody Drag for the Effects of Jet Temperature PDF Author: W. L. Peters
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 50

Get Book Here

Book Description
The objective of this investigation was to isolate those parameters defined as jet mixing effects on afterbody drag in an effort to develop a method of correcting or simulating the effects of jet temperature in wind tunnel experiments. Data used in the investigation were obtained from experiments conducted in the AEDC Aerodynamic Wind Tunnel (1T) with a strut-mounted model at free-stream Mach numbers from 0.6 to 1.2. Integrated afterbody pressure drag coefficient data were acquired for three nozzle area ratios (1.0, 1.24, and 2.96) using various unheated jet exhaust gas compositions that allowed a variation in gas constant from 55 to 767 ft/lbf/lbm-deg R. Jet mixing effects on afterbody drag coefficient produced by varying jet gas constant and nozzle area ratio at nozzle design pressure ratio, and the drag effects resulting from variations in nozzle pressure ratio at certain overexpanded jet conditions were observed to be similar functions of mass flux ratio. A simple experimental method has been proposed to allow corrections of afterbody drag coefficient data obtained in the wind tunnel (using an ambient temperature air jet) for the effects of jet gas constant. By inference, a similar drag correction can be obtained for the combined effect of gas constant and temperature, assuming their product defines the effects on drag produced by variations in either property. (Author).

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572

Get Book Here

Book Description


Exhaust Plume Temperature Effects on Nozzle Afterbody Performance Over the Transonic Mach Number Range

Exhaust Plume Temperature Effects on Nozzle Afterbody Performance Over the Transonic Mach Number Range PDF Author: C. E. Robinson
Publisher:
ISBN:
Category : Aerodynamics, Transonic
Languages : en
Pages : 98

Get Book Here

Book Description
Results of an experimental and analytical research investigation on nozzle/afterbody drag are presented. Experimental afterbody (and boattail) drag coefficients and pressure distributions are discussed for an isolated, strut-mounted nozzle/afterbody model for the Mach number range from 0.6 to 1.5. Some data are also given for free-stream unit Reynolds numbers from one million to approximately four million per foot. The experimental data were obtained for the basic model with an air-cooled and a water-cooled Ethylene/air combustor to provide hot-jet duplication as well as cold-jet simulation. The temperature of the nozzle exhaust gas was varied from 530R (burner-off) to approximately 2500R for several nozzle pressure ratios from jet-off to those corresponding to a moderately under-expanded exhaust plum. The initial series of experiments was conducted with the air-cooled combustors, and the effect of jet temperature on afterbody drag was somewhat masked by the effects of the secondary airflow from the cooling air. The general trend, however, shows a decreasing afterbody drag with increasing exhaust gas temperature and with decreasing secondary airflow at a fixed nozzle pressure ratio. (Modified author abstract).

Technical Abstract Bulletin

Technical Abstract Bulletin PDF Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 216

Get Book Here

Book Description


Wind Tunnels and Testing Techniques

Wind Tunnels and Testing Techniques PDF Author: North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 542

Get Book Here

Book Description


An Evaluation of Nozzle Afterbody Code

An Evaluation of Nozzle Afterbody Code PDF Author: Frederick C. Guyton
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 68

Get Book Here

Book Description


Government Reports Annual Index

Government Reports Annual Index PDF Author:
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 932

Get Book Here

Book Description
Sections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.

AIAA 85-1455 - AIAA 85-1484. (With omissions in numbering)

AIAA 85-1455 - AIAA 85-1484. (With omissions in numbering) PDF Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 310

Get Book Here

Book Description


Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences PDF Author: Wade H. Shafer
Publisher: Springer Science & Business Media
ISBN: 1468449192
Category : Science
Languages : en
Pages : 314

Get Book Here

Book Description
Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 28 (thesis year 1 983) a total of 10,661 theses titles from 26 Canadian and 197 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 28 reports theses submitted in-1983, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.

Computation of Axisymmetric Separated Nozzle-afterbody Flow

Computation of Axisymmetric Separated Nozzle-afterbody Flow PDF Author: James L. Jacocks
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 36

Get Book Here

Book Description
The development of a computer program for solving the compressible, axisymmetric, mass-averaged Navier-Stokes equations is described. The basic numerical algorithm is the MacCormack explicit predictor-corrector scheme. Turbulence modeling is accomplished using an algebraic, two-layer eddy viscosity model with a novel modification dependent on the streamwise gradient of vorticity. Comparisons of computed results with experimental data are presented for several nozzle-afterbody configurations with either or simulated plumes. (Author).