Experimental and Numerical Investigations of Fluid Flow for Natural Single Rock Fractures

Experimental and Numerical Investigations of Fluid Flow for Natural Single Rock Fractures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 566

Get Book Here

Book Description
To quantify the roughness of natural rock fracture surfaces, a two dimensional version of the modified divider method was adopted. The parameter Dr2d9Cx was found to be suitable to quantify the roughness of natural rock fractures. In addition to the mean aperture, a modified 3D box counting method was used to quantify aperture distributions of the same fractures. The modified 3D box counting method produced fractal dimensions in the range 2.3104 to 2.5661. The following new functional relations were developed for aperture parameters: (a) power-functionally decreasing mean aperture with increasing normal stress, (b) power-functionally decreasing 3D box fractal dimension with increasing normal stress, (c) linearly increasing mean aperture with increasing 3D box fractal dimension, (d) linearly decreasing mean aperture with increasing fracture closure, and (e) linearly decreasing 3D box fractal dimension with increasing fracture closure. Fluid flow through nine natural single rock fractures was measured at different normal stresses. The flow calculated for three out of the nine fractures according to sample scale cubic law using mean apertures overestimated the experimental flow by 2.2 ̃235.0 times within a normal stress range of 0 ̃8 MPa. The elementally applied cubic law (EACL) through a finite element model (FEM) also overestimated the experimental flow by 1.9 ̃111.7 times within the same normal stress range. As the normal stress applied on a natural rock fracture increases, the overestimation increases due to increasing contact areas and increasing tortuous behavior of flow. These findings clearly show the inapplicability of the cubic law to estimate flow through natural rock fractures especially under high normal stresses. New hyperbolic functions were developed to relate mean aperture to the power n to applied normal stress at both the sample and finite element scales. The following new functional relations were developed between fluid flow rate and the aperture parameters: (a) power-functionally increasing flow rate per unit head with increasing mean aperture, (b) exponentially decreasing flow rate per unit head with increasing fracture closure, and (c) power-functionally increasing flow rate per unit head with increasing 3D box fractal dimension.

Experimental and Numerical Investigations of Fluid Flow for Natural Single Rock Fractures

Experimental and Numerical Investigations of Fluid Flow for Natural Single Rock Fractures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 566

Get Book Here

Book Description
To quantify the roughness of natural rock fracture surfaces, a two dimensional version of the modified divider method was adopted. The parameter Dr2d9Cx was found to be suitable to quantify the roughness of natural rock fractures. In addition to the mean aperture, a modified 3D box counting method was used to quantify aperture distributions of the same fractures. The modified 3D box counting method produced fractal dimensions in the range 2.3104 to 2.5661. The following new functional relations were developed for aperture parameters: (a) power-functionally decreasing mean aperture with increasing normal stress, (b) power-functionally decreasing 3D box fractal dimension with increasing normal stress, (c) linearly increasing mean aperture with increasing 3D box fractal dimension, (d) linearly decreasing mean aperture with increasing fracture closure, and (e) linearly decreasing 3D box fractal dimension with increasing fracture closure. Fluid flow through nine natural single rock fractures was measured at different normal stresses. The flow calculated for three out of the nine fractures according to sample scale cubic law using mean apertures overestimated the experimental flow by 2.2 ̃235.0 times within a normal stress range of 0 ̃8 MPa. The elementally applied cubic law (EACL) through a finite element model (FEM) also overestimated the experimental flow by 1.9 ̃111.7 times within the same normal stress range. As the normal stress applied on a natural rock fracture increases, the overestimation increases due to increasing contact areas and increasing tortuous behavior of flow. These findings clearly show the inapplicability of the cubic law to estimate flow through natural rock fractures especially under high normal stresses. New hyperbolic functions were developed to relate mean aperture to the power n to applied normal stress at both the sample and finite element scales. The following new functional relations were developed between fluid flow rate and the aperture parameters: (a) power-functionally increasing flow rate per unit head with increasing mean aperture, (b) exponentially decreasing flow rate per unit head with increasing fracture closure, and (c) power-functionally increasing flow rate per unit head with increasing 3D box fractal dimension.

Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow PDF Author: Committee on Fracture Characterization and Fluid Flow
Publisher: National Academies Press
ISBN: 0309563488
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Fluid Flow in Fractured Rocks

Fluid Flow in Fractured Rocks PDF Author: Robert W. Zimmerman
Publisher: John Wiley & Sons
ISBN: 1119248027
Category : Science
Languages : en
Pages : 293

Get Book Here

Book Description
FLUID FLOW IN FRACTURED ROCKS "The definitive treatise on the subject for many years to come" (Prof. Ruben Juanes, MIT) Authoritative textbook that provides a comprehensive and up-to-date introduction to fluid flow in fractured rocks Fluid Flow in Fractured Rocks provides an authoritative introduction to the topic of fluid flow through single rock fractures and fractured rock masses. This book is intended for readers with interests in hydrogeology, hydrology, water resources, structural geology, reservoir engineering, underground waste disposal, or other fields that involve the flow of fluids through fractured rock masses. Classical and established models and data are presented and carefully explained, and recent computational methodologies and results are also covered. Each chapter includes numerous graphs, schematic diagrams and field photographs, an extensive reference list, and a set of problems, thus providing a comprehensive learning experience that is both mathematically rigorous and accessible. Written by two internationally recognized leaders in the field, Fluid Flow in Fractured Rocks includes information on: Nucleation and growth of fractures in rock, with a multiscale characterization of their geometric traits Effect of normal and shear stresses on the transmissivity of a rock fracture and mathematics of fluid flow through a single rock fracture Solute transport in rocks, with quantitative descriptions of advection, molecular diffusion, and dispersion Fluid Flow in Fractured Rocks is an essential resource for researchers and postgraduate students who are interested in the field of fluid flow through fractured rocks. The text is also highly suitable for professionals working in civil, environmental, and petroleum engineering.

Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses

Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses PDF Author: Xing Zhang
Publisher: Elsevier
ISBN: 0080537863
Category : Science
Languages : en
Pages : 301

Get Book Here

Book Description
Our understanding of the subsurface system of the earth is becoming increasingly more sophisticated both at the level of the behaviour of its components (solid, liquid and gas) as well as their variations in space and time. The implementation of coupled models is essential for the understanding of an increasing number of natural phenomena and in predicting human impact on these.The growing interest in the relation between fluid flow and deformation in subsurface rock systems that characterise the upper crust has led to increasingly specialized knowledge in many branches of earth sciences and engineering. A multidisciplinary subject dealing with deformation and fluid flow in the subsurface system is emerging.While research in the subject area of faulting, fracturing and fluid flow has led to significant progress in many different areas, the approach has tended to be "reductionist", i.e. involving the isolation and simplification of phenomena so that they may be treated as single physical processes. The reality is that many processes operate together within subsurface systems, and this is particularly true for fluid flow and deformation of fractured rock masses. The aim of this book is to begin to explore how advances in numerical modelling can be applied to understanding the complex phenomena observed in such systems.Although mainly based on original research, the book also includes the fundamental principles and practical methods of numerical modelling, in particular distinct element methods. This volume explores the principles of numerical modelling and the methodologies for some of the most important problems, in addition to providing practical models with detailed discussions on various topics.

Fluid Flow in Fractured Rocks

Fluid Flow in Fractured Rocks PDF Author: Robert W. Zimmerman
Publisher: John Wiley & Sons
ISBN: 1119248019
Category : Science
Languages : en
Pages : 293

Get Book Here

Book Description
FLUID FLOW IN FRACTURED ROCKS "The definitive treatise on the subject for many years to come" (Prof. Ruben Juanes, MIT) Authoritative textbook that provides a comprehensive and up-to-date introduction to fluid flow in fractured rocks Fluid Flow in Fractured Rocks provides an authoritative introduction to the topic of fluid flow through single rock fractures and fractured rock masses. This book is intended for readers with interests in hydrogeology, hydrology, water resources, structural geology, reservoir engineering, underground waste disposal, or other fields that involve the flow of fluids through fractured rock masses. Classical and established models and data are presented and carefully explained, and recent computational methodologies and results are also covered. Each chapter includes numerous graphs, schematic diagrams and field photographs, an extensive reference list, and a set of problems, thus providing a comprehensive learning experience that is both mathematically rigorous and accessible. Written by two internationally recognized leaders in the field, Fluid Flow in Fractured Rocks includes information on: Nucleation and growth of fractures in rock, with a multiscale characterization of their geometric traits Effect of normal and shear stresses on the transmissivity of a rock fracture and mathematics of fluid flow through a single rock fracture Solute transport in rocks, with quantitative descriptions of advection, molecular diffusion, and dispersion Fluid Flow in Fractured Rocks is an essential resource for researchers and postgraduate students who are interested in the field of fluid flow through fractured rocks. The text is also highly suitable for professionals working in civil, environmental, and petroleum engineering.

Structural and Tectonic Modelling and its Application to Petroleum Geology

Structural and Tectonic Modelling and its Application to Petroleum Geology PDF Author: R.M. Larsen
Publisher: Elsevier
ISBN: 1483291057
Category : Science
Languages : en
Pages : 564

Get Book Here

Book Description
This monograph presents a unique combination of structural and tectonic modelling with applied petroleum geological problems. Focussing on the Norwegian Continental Shelf and neighbouring areas, it includes discussion covering all scales - from development of sedimentary basins, to formation of fractures and joints on a microscale - and from exploration, to the exploitation of hydrocarbons. The book's coverage of structural and tectonic modelling, petroleum geology applications, and the treatment of the Norwegian Continental Shelf should make this book an invaluable resource book for advanced students of structural and tectonic modelling, teachers, and researchers; as well as for geologists and geophysicists in the petroleum industry.

Numerical and Experimental Study of Fluid Flow in a Rough-walled Rock Fracture

Numerical and Experimental Study of Fluid Flow in a Rough-walled Rock Fracture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Fractured Porous Media

Fractured Porous Media PDF Author: Pierre M. Adler
Publisher: Oxford University Press, USA
ISBN: 0199666512
Category : Science
Languages : en
Pages : 184

Get Book Here

Book Description
This book provides a systematic treatment of the geometrical and transport properties of fractures, fracture networks, and fractured porous media. It is divided into two major parts. The first part deals with geometry of individual fractures and of fracture networks. The use of the dimensionless density rationalizes the results for the percolation threshold of the networks. It presents the crucial advantage of grouping the numerical data for various fracture shapes. The second part deals mainly with permeability under steady conditions of fractures, fracture networks, and fractured porous media. Again the results for various types of networks can be rationalized by means of the dimensionless density. A chapter is dedicated to two phase flow in fractured porous media.

Hydraulic Fracture Mechanics

Hydraulic Fracture Mechanics PDF Author: Peter Valkó
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 328

Get Book Here

Book Description
The book explores the theoretical background of one of the most widespread activities in hydrocarbon wells, that of hydraulic fracturing. A comprehensive treatment of the basic phenomena includes: linear elasticity, stresses, fracture geometry and rheology. The diverse concepts of mechanics are integrated into a coherent description of hydraulic fracture propagation. The chapters in the book are cross-referenced throughout and the connections between the various phenomena are emphasized. The book offers readers a unique approach to the subject with the use of many numerical examples.

Proceedings of the International Field Exploration and Development Conference 2023

Proceedings of the International Field Exploration and Development Conference 2023 PDF Author: Jia’en Lin
Publisher: Springer Nature
ISBN: 9819702569
Category :
Languages : en
Pages : 1421

Get Book Here

Book Description