Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 556
Book Description
ASME Technical Papers
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 556
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 556
Book Description
Paper
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 574
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 574
Book Description
Heat Transfer in Gas Turbines
Author: Bengt Sundén
Publisher: Witpress
ISBN:
Category : Medical
Languages : en
Pages : 544
Book Description
This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.
Publisher: Witpress
ISBN:
Category : Medical
Languages : en
Pages : 544
Book Description
This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.
Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Unsteady Computational Fluid Dynamics in Aeronautics
Author: P.G. Tucker
Publisher: Springer Science & Business Media
ISBN: 9400770499
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France
Publisher: Springer Science & Business Media
ISBN: 9400770499
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France
Fluid Machinery and Fluid Mechanics
Author: Jianzhong Xu
Publisher: Springer Science & Business Media
ISBN: 3540897496
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
"Fluid Machinery and Fluid Mechanics: 4th International Symposium (4th ISFMFE)" is the proceedings of 4th International Symposium on Fluid Machinery and Fluid Engineering, held in Beijing November 24-27, 2008. It contains 69 highly informative technical papers presented at the Mei Lecture session and the technical sessions of the symposium. The Chinese Society of Engineering Thermophysics (CSET) organized the First, the Second and the Third International Symposium on Fluid Machinery and Fluid Engineering (1996, 2000 and 2004). The purpose of the 4th Symposium is to provide a common forum for exchange of scientific and technical information worldwide on fluid machinery and fluid engineering for scientists and engineers. The main subject of this symposium is "Fluid Machinery for Energy Conservation". The "Mei Lecture" reports on the most recent developments of fluid machinery in commemoration of the late professor Mei Zuyan. The book is intended for researchers and engineers in fluid machinery and fluid engineering. Jianzhong Xu is a professor at the Chinese Society of Engineering Thermophysics, Chinese Academy of Sciences, Beijing.
Publisher: Springer Science & Business Media
ISBN: 3540897496
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
"Fluid Machinery and Fluid Mechanics: 4th International Symposium (4th ISFMFE)" is the proceedings of 4th International Symposium on Fluid Machinery and Fluid Engineering, held in Beijing November 24-27, 2008. It contains 69 highly informative technical papers presented at the Mei Lecture session and the technical sessions of the symposium. The Chinese Society of Engineering Thermophysics (CSET) organized the First, the Second and the Third International Symposium on Fluid Machinery and Fluid Engineering (1996, 2000 and 2004). The purpose of the 4th Symposium is to provide a common forum for exchange of scientific and technical information worldwide on fluid machinery and fluid engineering for scientists and engineers. The main subject of this symposium is "Fluid Machinery for Energy Conservation". The "Mei Lecture" reports on the most recent developments of fluid machinery in commemoration of the late professor Mei Zuyan. The book is intended for researchers and engineers in fluid machinery and fluid engineering. Jianzhong Xu is a professor at the Chinese Society of Engineering Thermophysics, Chinese Academy of Sciences, Beijing.
Fluid Mechanics for Engineers
Author: Meinhard T. Schobeiri
Publisher: Springer Science & Business Media
ISBN: 3642115942
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
Publisher: Springer Science & Business Media
ISBN: 3642115942
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
Nano/Microscale Heat Transfer
Author: Zhuomin M. Zhang
Publisher: Springer Nature
ISBN: 3030450392
Category : Science
Languages : en
Pages : 780
Book Description
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Publisher: Springer Nature
ISBN: 3030450392
Category : Science
Languages : en
Pages : 780
Book Description
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
Author: Kenneth C. Hall
Publisher: Springer Science & Business Media
ISBN: 1402046057
Category : Technology & Engineering
Languages : en
Pages : 605
Book Description
This textbook is a collection of technical papers that were presented at the 10th International Symposium on Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines held September 8-11, 2003 at Duke University in Durham, North Carolina. The papers represent the latest in state of the art research in the areas of aeroacoustics, aerothermodynamics, computational methods, experimental testing related to flow instabilities, flutter, forced response, multistage, and rotor-stator effects for turbomachinery.
Publisher: Springer Science & Business Media
ISBN: 1402046057
Category : Technology & Engineering
Languages : en
Pages : 605
Book Description
This textbook is a collection of technical papers that were presented at the 10th International Symposium on Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines held September 8-11, 2003 at Duke University in Durham, North Carolina. The papers represent the latest in state of the art research in the areas of aeroacoustics, aerothermodynamics, computational methods, experimental testing related to flow instabilities, flutter, forced response, multistage, and rotor-stator effects for turbomachinery.
Thermal Management of Electronic Systems II
Author: E. Beyne
Publisher: Springer Science & Business Media
ISBN: 9401155062
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
For the second time, the Eurotherm Committee has chosen Thermal Managment of Electronic Systems as the subject for its 45th Seminar, held at IMEC in Leuven, Belgium, from 20 to 22 September 1995. After the successfui first edition of this seminar in Delft, June 14-16, 1993, it was decided to repeat this event on a two year basis. This volume constitutes the edited proceedings of the Seminar. Thermal management of electronic systems is gaining importance. Whereas a few years ago papers on this subject where mainly devoted to applications in high end markets, such as mainframes and telecommunication switching equipment, we see a growing importance in the "lower" end applications. This may be understood from the growing impact of electronics on every day life, from car electronics, GSM phones, personal computers to electronic games. These applications add new requirements to the thermal design. The thermal problem and the applicable cooling strategies are quite different from those in high end products. In this seminar the latest developments in many of the different aspects of the thermal design of electronic systems were discussed. Particular attention was given to thermal modelling, experimental characterisation and the impact of thermal design on the reliability of electronic systems.
Publisher: Springer Science & Business Media
ISBN: 9401155062
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
For the second time, the Eurotherm Committee has chosen Thermal Managment of Electronic Systems as the subject for its 45th Seminar, held at IMEC in Leuven, Belgium, from 20 to 22 September 1995. After the successfui first edition of this seminar in Delft, June 14-16, 1993, it was decided to repeat this event on a two year basis. This volume constitutes the edited proceedings of the Seminar. Thermal management of electronic systems is gaining importance. Whereas a few years ago papers on this subject where mainly devoted to applications in high end markets, such as mainframes and telecommunication switching equipment, we see a growing importance in the "lower" end applications. This may be understood from the growing impact of electronics on every day life, from car electronics, GSM phones, personal computers to electronic games. These applications add new requirements to the thermal design. The thermal problem and the applicable cooling strategies are quite different from those in high end products. In this seminar the latest developments in many of the different aspects of the thermal design of electronic systems were discussed. Particular attention was given to thermal modelling, experimental characterisation and the impact of thermal design on the reliability of electronic systems.