Experimental and CFD Analysis of Advanced Convective Cooling Systems

Experimental and CFD Analysis of Advanced Convective Cooling Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objective of this project is to study the fundamental physical phenomena in the reactor cavity cooling system (RCCS) of very high-temperature reactors (VHTRs). One of the primary design objectives is to assure that RCCS acts as an ultimate heat sink capable of maintaining thermal integrity of the fuel, vessel, and equipment within the reactor cavity for the entire spectrum of postulated accident scenarios. Since construction of full-scale experimental test facilities to study these phenomena is impractical, it is logical to expect that computational fluid dynamics (CFD) simulations will play a key role in the RCCS design process. An important question then arises: To what extent are conventional CFD codes able to accurately capture the most important flow phenomena, and how can they be modified to improve their quantitative predictions? Researchers are working to tackle this problem in two ways. First, in the experimental phase, the research team plans to design and construct an innovative platform that will provide a standard test setting for validating CFD codes proposed for the RCCS design. This capability will significantly advance the state of knowledge in both liquid-cooled and gas-cooled (e.g., sodium fast reactor) reactor technology. This work will also extend flow measurements to micro-scale levels not obtainable in large-scale test facilities, thereby revealing previously undetectable phenomena that will complement the existing infrastructure. Second, in the computational phase of this work, numerical simulation of the flow and temperature profiles will be performed using advanced turbulence models to simulate the complex conditions of flows in critical zones of the cavity. These models will be validated and verified so that they can be implemented into commercially available CFD codes. Ultimately, the results of these validation studies can then be used to enable a more accurate design and safety evaluation of systems in actual nuclear power applications (both during normal operation and accident scenarios).

Experimental and CFD Analysis of Advanced Convective Cooling Systems

Experimental and CFD Analysis of Advanced Convective Cooling Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objective of this project is to study the fundamental physical phenomena in the reactor cavity cooling system (RCCS) of very high-temperature reactors (VHTRs). One of the primary design objectives is to assure that RCCS acts as an ultimate heat sink capable of maintaining thermal integrity of the fuel, vessel, and equipment within the reactor cavity for the entire spectrum of postulated accident scenarios. Since construction of full-scale experimental test facilities to study these phenomena is impractical, it is logical to expect that computational fluid dynamics (CFD) simulations will play a key role in the RCCS design process. An important question then arises: To what extent are conventional CFD codes able to accurately capture the most important flow phenomena, and how can they be modified to improve their quantitative predictions? Researchers are working to tackle this problem in two ways. First, in the experimental phase, the research team plans to design and construct an innovative platform that will provide a standard test setting for validating CFD codes proposed for the RCCS design. This capability will significantly advance the state of knowledge in both liquid-cooled and gas-cooled (e.g., sodium fast reactor) reactor technology. This work will also extend flow measurements to micro-scale levels not obtainable in large-scale test facilities, thereby revealing previously undetectable phenomena that will complement the existing infrastructure. Second, in the computational phase of this work, numerical simulation of the flow and temperature profiles will be performed using advanced turbulence models to simulate the complex conditions of flows in critical zones of the cavity. These models will be validated and verified so that they can be implemented into commercially available CFD codes. Ultimately, the results of these validation studies can then be used to enable a more accurate design and safety evaluation of systems in actual nuclear power applications (both during normal operation and accident scenarios).

Theoretical, Computational, and Experimental Solutions to Thermo-Fluid Systems

Theoretical, Computational, and Experimental Solutions to Thermo-Fluid Systems PDF Author: Muthukumar Palanisamy
Publisher: Springer Nature
ISBN: 9813341653
Category : Technology & Engineering
Languages : en
Pages : 505

Get Book Here

Book Description
This book presents select proceedings of the International Conference on Innovations in Thermo-Fluid Engineering and Sciences (ICITFES 2020). It covers topics in theoretical and experimental fluid dynamics, numerical methods in heat transfer and fluid mechanics, different modes of heat transfer, multiphase flow, fluid machinery, fluid power, refrigeration and air conditioning, and cryogenics. The book will be helpful to the researchers, scientists, and professionals working in the field of fluid mechanics and machinery, and thermal engineering.

A Study in Computational Fluid Dynamics for the Determination of Convective Heat and Vapour Transfer Coefficients

A Study in Computational Fluid Dynamics for the Determination of Convective Heat and Vapour Transfer Coefficients PDF Author: Adam Neale
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Convective heat and moisture transfer coefficients are required to simulate the performance of building envelope systems, for example, in the simulation of the drying of wood or brick cladding wetted by driving rain. Such coefficients are dependent on the velocity and type of the air flow, the air and material temperature, the moisture content of the material and the relative humidity of the air. Convective heat transfer coefficient correlations are readily available for many geometries and air flow conditions, but primarily for mechanical engineering applications. It is not so for convective mass transfer coefficients. Building physicists must often put up with values from literature that are not entirely adequate or perform measurements for the conditions under study. The overall goal of this work was to study the feasibility and accuracy of using computational fluid dynamics (CFD) to calculate convective heat and vapour transfer coefficients. The objectives were: (1) to validate the CFD simulation results for boundary layer velocity and temperature profiles for laminar and turbulent forced convection, and for turbulent natural convection; (2) to simulate vapor transfer between air and a porous material; and (3) to compare the calculated convective heat and vapor transfer coefficients with literature experimental data. Several CFD simulations were performed to calculate the boundary layer velocity and temperature profiles in different configurations. The calculated convective heat transfer coefficients were compared with analytical, semi-empirical and/or experimental results from literature. A grid sensitivity analysis was performed to determine the grid independent solutions for certain cases. The overall conclusion was that CFD accurately predicted the boundary layer velocity and temperature profiles and the convective heat transfer coefficients for the cases studied. In order to simulate vapour transfer between air and porous materials, a model was developed using CFD coupled with an external vapour transport model. CFD was used to model heat and water vapour transport in the air, including both convective and radiative heat transfer, and heat transport within the material. Vapour transport in the material was calculated externally and coupled with the CFD solution at specific time steps. A transient case of air flow over a drying wood sample was simulated using the developed model. A sensitivity analysis was performed on relevant model parameters, such as the material properties of the wood and flow conditions of the air layer.

CFD Techniques and Thermo-Mechanics Applications

CFD Techniques and Thermo-Mechanics Applications PDF Author: Zied Driss
Publisher: Springer
ISBN: 3319709453
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
This book focuses on CFD (Computational Fluid Dynamics) techniques and the recent developments and research works in thermo-mechanics applications. It is devoted to the publication of basic and applied studies broadly related to this area. The chapters present the development of numerical methods, computational techniques, and case studies in the thermo-mechanics applications. They offer the fundamental knowledge for using CFD in real thermo-mechanics applications and complex flow problems through new technical approaches. Also, they discuss the steps in the CFD process and provide benefits and issues when using the CFD analysis in understanding of complicated flow phenomena and its use in the design process. The best practices for reducing errors and uncertainties in CFD analysis are also discussed. The presented case studies and development approaches aim to provide the readers, such as engineers and PhD students, the fundamentals of CFD prior to embarking on any real simulation project. Additionally, engineers supporting or being supported by CFD analysts can benefit from this book. ​

The Black E.O.E. Journal

The Black E.O.E. Journal PDF Author:
Publisher:
ISBN:
Category : Affirmative action programs
Languages : en
Pages : 100

Get Book Here

Book Description


Heat Transfer

Heat Transfer PDF Author: Miguel Araiz
Publisher: BoD – Books on Demand
ISBN: 1839684372
Category : Technology & Engineering
Languages : en
Pages : 418

Get Book Here

Book Description
Thermal energy is present in all aspects of our lives, including when cooking, driving, or turning on the heat or air conditioning. Sometimes this thermal management is not evident, but it is essential for our comfort and lifestyle. In addition, heat transfer is vital in many industrial processes. Thermal energy analysis is a complex task that usually requires different approaches. With five sections, this book provides information on heat transfer problems and using experimental techniques and computational models to analyse them.

Computational Fluid Dynamic (cfd) Simulation of Flow in Cooling Tower

Computational Fluid Dynamic (cfd) Simulation of Flow in Cooling Tower PDF Author: Amirul Hakim Bin Mohd Khalid
Publisher:
ISBN:
Category : Bioprosess engineering
Languages : en
Pages : 43

Get Book Here

Book Description
This study was designed to focus onComputational Fluid Dynamic (CFD) Simulation of flow in cooling tower. The use of computational fluid dynamics to predict internal and external flow has risen dramatically in the past decade. The objectives of this study were to construct the grid model of cooling tower, to verify the simulation grid dependency and validate the CFD modelling based on experimental results. The laboratory cooling tower is a cooling tower unit from commercial air conditioning system used to study the principles of cooling tower operation. The experimental result shown that the increasing of heater power will increase the temperature of cooling range in the cooling tower. The grid dependency study, medium was chosen because the convergence time is not too long and the rate of error for the medium mesh is inside adequate range from 7% to 20%. For validation of data experimental and CFD was comparing and there are 18.48% more percentage accuracy between experiment and CFD.

Advanced Computational Methods and Experiments in Heat Transfer X

Advanced Computational Methods and Experiments in Heat Transfer X PDF Author: Bengt Sundén
Publisher: WIT Press
ISBN: 1845641221
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book Here

Book Description
In engineering design and development, reliable and accurate computational methods are requested to replace or complement expensive and time consuming experimental trial and error work. Tremendous advancements have been achieved during recent years due to improved numerical solutions of non-linear partial differential equations and computer developments to achieve efficient and rapid calculations. Nevertheless, to further progress in computational methods will require developments in theoretical and predictive procedures – both basic and innovative – and in applied research. Accurate experimental investigations are needed to validate the numerical calculations. This book contains the edited versions of the papers presented at the Tenth International Conference on Advanced Computational Methods and Experimental Measurements in Heat Transfer and Mass Transfer held in Maribor, Slovenia in July 2008. The objective of this conference series is to provide a forum for presentation and discussion of advanced topics, new approaches and application of advanced computational methods and experimental measurements to heat and mass transfer problems. The contributed papers are grouped in the following appropriate sections to provide better access for readers: Natural and forced convection; Heat exchangers; Advances in computational methods; Heat recovery; Heat transfer; Modelling and experiments.

Laminar Flow Forced Convection in Ducts

Laminar Flow Forced Convection in Ducts PDF Author: R. K. Shah
Publisher: Academic Press
ISBN: 1483191303
Category : Technology & Engineering
Languages : en
Pages : 492

Get Book Here

Book Description
Laminar Flow Forced Convection in Ducts is a sourcebook for compact heat exchanger analytical data. This book describes the analytical solutions for laminar fluid flow and forced convection heat transfer in circular and noncircular pipes, including applicable differential equations and boundary conditions involving velocity and temperature problems of fluid flow. The book also discusses fluid flow—how much power is required to pump fluids through the heat exchanger, as well as the heat transfer—the determination of q" distribution, and the temperature of fluid and walls. The text also analyzes the coolant or heat transfer fluid flows in a nuclear power reactor composed of a bundle of circular section fuel rods located inside a round tube. R.A. Axford addresses fluid flow and heat transfers results for the rod bundle geometry in "Heat Transfer in Rod Bundles." The book also provides an overview and guidelines that can be used for the designer and the applied mathematician. This book is suitable for engineers working in electronics, aerospace, instrumentation, and biomechanics that use cooling or heating exchanges or solar collection systems.

Advances of CFD in Fluid Machinery Design

Advances of CFD in Fluid Machinery Design PDF Author: Robin Elder
Publisher: John Wiley & Sons
ISBN: 9781860583537
Category : Science
Languages : en
Pages : 258

Get Book Here

Book Description
In the past Computational Fluid Dynamics (CFD) was confined to large organisations capable of developing and supporting their own codes. But recently there has been a rapid increase in the availability of reasonably priced commercial codes, and many more industrial organisations are now able to routinely use CFD. Advances of CFD in Fluid Machinery Design provide the perfect opportunity to find out what industry is doing and this book addresses how CFD is now being increasingly used in the design process, rather than as a post-design analysis tool. COMPLETE CONTENTS Trends in industrial use of CFD Challenges and methodologies in the design of axial flow fans for high-bypass-ratio, gas turbine engines using steady and unsteady CFD A three-dimensional inverse method based on pressure loading for the design of turbomachinery blades Application of CFD to the design and analysis of axial and centrifugal fans and compressors The design and performance of a transonic flow deswirling system – an application of current CFD design techniques tested against model and full-scale experiments Recent developments in unsteady flow modelling for turbomachinery aeroelasticity Computational investigation of flow in casing treatments for stall delay in axial flow fans Use of CFD for the three-dimensional hydrodynamic design of vertical diffuser pumps Recommendations to designers for CFD pump impeller and diffuser simulations Three dimensional CFD – a possibility to analyse piston pump flow dynamics CFD analysis of screw compressor performance Prediction of aerothermal phenomena in high-speed discstator systems Use of CFD in the design of a shaft seal for high-performance turbomachinery Users and potential users, of CFD for the design of fluid machinery, managers, designers, and researchers working in the field of ‘industrial flows’, will all find Advances of CFD in Fluid Machinery Design a valuable volume discussing state-of-the-art developments in CFD.