Mathematical Excursions to the World's Great Buildings

Mathematical Excursions to the World's Great Buildings PDF Author: Alexander J. Hahn
Publisher: Princeton University Press
ISBN: 1400841992
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
How mathematics helped build the world's most important buildings from early Egypt to the present From the pyramids and the Parthenon to the Sydney Opera House and the Bilbao Guggenheim, this book takes readers on an eye-opening tour of the mathematics behind some of the world's most spectacular buildings. Beautifully illustrated, the book explores the milestones in elementary mathematics that enliven the understanding of these buildings and combines this with an in-depth look at their aesthetics, history, and structure. Whether using trigonometry and vectors to explain why Gothic arches are structurally superior to Roman arches, or showing how simple ruler and compass constructions can produce sophisticated architectural details, Alexander Hahn describes the points at which elementary mathematics and architecture intersect. Beginning in prehistoric times, Hahn proceeds to guide readers through the Greek, Roman, Islamic, Romanesque, Gothic, Renaissance, and modern styles. He explores the unique features of the Pantheon, the Hagia Sophia, the Great Mosque of Cordoba, the Duomo in Florence, Palladio's villas, and Saint Peter's Basilica, as well as the U.S. Capitol Building. Hahn celebrates the forms and structures of architecture made possible by mathematical achievements from Greek geometry, the Hindu-Arabic number system, two- and three-dimensional coordinate geometry, and calculus. Along the way, Hahn introduces groundbreaking architects, including Brunelleschi, Alberti, da Vinci, Bramante, Michelangelo, della Porta, Wren, Gaudí, Saarinen, Utzon, and Gehry. Rich in detail, this book takes readers on an expedition around the globe, providing a deeper understanding of the mathematical forces at play in the world's most elegant buildings.

Mathematical Excursions to the World's Great Buildings

Mathematical Excursions to the World's Great Buildings PDF Author: Alexander J. Hahn
Publisher: Princeton University Press
ISBN: 1400841992
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
How mathematics helped build the world's most important buildings from early Egypt to the present From the pyramids and the Parthenon to the Sydney Opera House and the Bilbao Guggenheim, this book takes readers on an eye-opening tour of the mathematics behind some of the world's most spectacular buildings. Beautifully illustrated, the book explores the milestones in elementary mathematics that enliven the understanding of these buildings and combines this with an in-depth look at their aesthetics, history, and structure. Whether using trigonometry and vectors to explain why Gothic arches are structurally superior to Roman arches, or showing how simple ruler and compass constructions can produce sophisticated architectural details, Alexander Hahn describes the points at which elementary mathematics and architecture intersect. Beginning in prehistoric times, Hahn proceeds to guide readers through the Greek, Roman, Islamic, Romanesque, Gothic, Renaissance, and modern styles. He explores the unique features of the Pantheon, the Hagia Sophia, the Great Mosque of Cordoba, the Duomo in Florence, Palladio's villas, and Saint Peter's Basilica, as well as the U.S. Capitol Building. Hahn celebrates the forms and structures of architecture made possible by mathematical achievements from Greek geometry, the Hindu-Arabic number system, two- and three-dimensional coordinate geometry, and calculus. Along the way, Hahn introduces groundbreaking architects, including Brunelleschi, Alberti, da Vinci, Bramante, Michelangelo, della Porta, Wren, Gaudí, Saarinen, Utzon, and Gehry. Rich in detail, this book takes readers on an expedition around the globe, providing a deeper understanding of the mathematical forces at play in the world's most elegant buildings.

Excursions in Modern Mathematics

Excursions in Modern Mathematics PDF Author: Peter Tannenbaum
Publisher: Pearson
ISBN: 9780321825735
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
"Disability and Academic Exclusion interrogates obstacles the disabled have encountered in education, from a historical perspective that begins with the denial of literacy to minorities in the colonial era to the later centuries' subsequent intolerance of writing, orality, and literacy mastered by former slaves, women, and the disabled. The text then questions where we stand today in regards to the university-wide rhetoric on promoting diversity and accommodating disability in the classroom." Amazon.com viewed 6/2/2020.

Excursions in Number Theory

Excursions in Number Theory PDF Author: Charles Stanley Ogilvy
Publisher: Courier Corporation
ISBN: 9780486257785
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
Challenging, accessible mathematical adventures involving prime numbers, number patterns, irrationals and iterations, calculating prodigies, and more. No special training is needed, just high school mathematics and an inquisitive mind. "A splendidly written, well selected and presented collection. I recommend the book unreservedly to all readers." — Martin Gardner.

Excursions in Geometry

Excursions in Geometry PDF Author: Charles Stanley Ogilvy
Publisher: Courier Corporation
ISBN: 0486265307
Category : Mathematics
Languages : en
Pages : 191

Get Book Here

Book Description
A straightedge, compass, and a little thought are all that's needed to discover the intellectual excitement of geometry. Harmonic division and Apollonian circles, inversive geometry, hexlet, Golden Section, more. 132 illustrations.

Excursions into Mathematics

Excursions into Mathematics PDF Author: Anatole Beck
Publisher: CRC Press
ISBN: 1000692094
Category : Mathematics
Languages : en
Pages : 526

Get Book Here

Book Description
Since it was first published three decades ago, Excursions Into Mathematics has been one of the most popular mathematical books written for a general audience. Taking the reader for short "excursions" into several specific disciplines of mathematics, it makes mathematical concepts accessible to a wide audience. The Millennium Edition is updated with current research and new solutions to outstanding problems that have been discovered since the last edition was printed, such as the solution to the well-known "four-color problem." Excursions Into Mathematics: The Millennium Edition is an exciting revision of the original, much-loved classic. Everyone with an interest in mathematics should read this book.

Excursions in Calculus

Excursions in Calculus PDF Author: Robert M. Young
Publisher: American Mathematical Soc.
ISBN: 1470457202
Category : Mathematics
Languages : en
Pages : 435

Get Book Here

Book Description
This book explores the rich and elegant interplay between the two main currents of mathematics, the continuous and the discrete. Such fundamental notions in discrete mathematics as induction, recursion, combinatorics, number theory, discrete probability, and the algorithmic point of view as a unifying principle are continually explored as they interact with traditional calculus.

Playing with Infinity

Playing with Infinity PDF Author: Rozsa Peter
Publisher:
ISBN: 9780844652351
Category :
Languages : en
Pages :

Get Book Here

Book Description
Popular account ranges from counting to mathematical logic and covers many concepts related to infinity: graphic representation of functions; pairings, other combinations; prime numbers; logarithms, circular functions; more. 216 illustrations.

An Excursion through Elementary Mathematics, Volume I

An Excursion through Elementary Mathematics, Volume I PDF Author: Antonio Caminha Muniz Neto
Publisher: Springer
ISBN: 9783319538709
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This first volume covers Real Numbers, Functions, Real Analysis, Systems of Equations, Limits and Derivatives, and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many essential theorems related to the content. An extensive Appendix offering hints on or full solutions for all difficult problems rounds out the book.

Euclid—The Creation of Mathematics

Euclid—The Creation of Mathematics PDF Author: Benno Artmann
Publisher: Springer Science & Business Media
ISBN: 1461214122
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Euclid presents the essential of mathematics in a manner which has set a high standard for more than 2000 years. This book, an explanation of the nature of mathematics from its most important early source, is for all lovers of mathematics with a solid background in high school geometry, whether they be students or university professors.

The State Space Method

The State Space Method PDF Author: Daniel Alpay
Publisher: Springer Science & Business Media
ISBN: 9783764373702
Category : Language Arts & Disciplines
Languages : en
Pages : 292

Get Book Here

Book Description
The state space method developed in the last decades allows us to study the theory of linear systems by using tools from the theory of linear operators; conversely, it had a strong influence on operator theory introducing new questions and topics. The present volume contains a collection of essays representing some of the recent advances in the state space method. Methods covered include noncommutative systems theory, new aspects of the theory of discrete systems, discrete analogs of canonical systems, and new applications to the theory of Bezoutiants and convolution equations. The articles in the volume will be of interest to pure and applied mathematicians, electrical engineers and theoretical physicists.