Author: Haiping Ma
Publisher: John Wiley & Sons
ISBN: 1848218079
Category : Computers
Languages : en
Pages : 356
Book Description
Evolutionary computation algorithms are employed to minimize functions with large number of variables. Biogeography-based optimization (BBO) is an optimization algorithm that is based on the science of biogeography, which researches the migration patterns of species. These migration paradigms provide the main logic behind BBO. Due to the cross-disciplinary nature of the optimization problems, there is a need to develop multiple approaches to tackle them and to study the theoretical reasoning behind their performance. This book explains the mathematical model of BBO algorithm and its variants created to cope with continuous domain problems (with and without constraints) and combinatorial problems.
Evolutionary Computation with Biogeography-based Optimization
Author: Haiping Ma
Publisher: John Wiley & Sons
ISBN: 1848218079
Category : Computers
Languages : en
Pages : 356
Book Description
Evolutionary computation algorithms are employed to minimize functions with large number of variables. Biogeography-based optimization (BBO) is an optimization algorithm that is based on the science of biogeography, which researches the migration patterns of species. These migration paradigms provide the main logic behind BBO. Due to the cross-disciplinary nature of the optimization problems, there is a need to develop multiple approaches to tackle them and to study the theoretical reasoning behind their performance. This book explains the mathematical model of BBO algorithm and its variants created to cope with continuous domain problems (with and without constraints) and combinatorial problems.
Publisher: John Wiley & Sons
ISBN: 1848218079
Category : Computers
Languages : en
Pages : 356
Book Description
Evolutionary computation algorithms are employed to minimize functions with large number of variables. Biogeography-based optimization (BBO) is an optimization algorithm that is based on the science of biogeography, which researches the migration patterns of species. These migration paradigms provide the main logic behind BBO. Due to the cross-disciplinary nature of the optimization problems, there is a need to develop multiple approaches to tackle them and to study the theoretical reasoning behind their performance. This book explains the mathematical model of BBO algorithm and its variants created to cope with continuous domain problems (with and without constraints) and combinatorial problems.
Evolutionary Optimization Algorithms
Author: Dan Simon
Publisher: John Wiley & Sons
ISBN: 1118659503
Category : Mathematics
Languages : en
Pages : 776
Book Description
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Publisher: John Wiley & Sons
ISBN: 1118659503
Category : Mathematics
Languages : en
Pages : 776
Book Description
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Evolutionary Algorithms and Neural Networks
Author: Seyedali Mirjalili
Publisher: Springer
ISBN: 3319930257
Category : Technology & Engineering
Languages : en
Pages : 164
Book Description
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
Publisher: Springer
ISBN: 3319930257
Category : Technology & Engineering
Languages : en
Pages : 164
Book Description
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
The Quadratic Assignment Problem
Author: E. Cela
Publisher: Springer Science & Business Media
ISBN: 1475727879
Category : Mathematics
Languages : en
Pages : 296
Book Description
The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, ope- tions researchers and practitioners. Nowadays the QAP is widely considered as a classical combinatorial optimization problem which is (still) attractive from many points of view. In our opinion there are at last three main reasons which make the QAP a popular problem in combinatorial optimization. First, the number of re- life problems which are mathematically modeled by QAPs has been continuously increasing and the variety of the fields they belong to is astonishing. To recall just a restricted number among the applications of the QAP let us mention placement problems, scheduling, manufacturing, VLSI design, statistical data analysis, and parallel and distributed computing. Secondly, a number of other well known c- binatorial optimization problems can be formulated as QAPs. Typical examples are the traveling salesman problem and a large number of optimization problems in graphs such as the maximum clique problem, the graph partitioning problem and the minimum feedback arc set problem. Finally, from a computational point of view the QAP is a very difficult problem. The QAP is not only NP-hard and - hard to approximate, but it is also practically intractable: it is generally considered as impossible to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits.
Publisher: Springer Science & Business Media
ISBN: 1475727879
Category : Mathematics
Languages : en
Pages : 296
Book Description
The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, ope- tions researchers and practitioners. Nowadays the QAP is widely considered as a classical combinatorial optimization problem which is (still) attractive from many points of view. In our opinion there are at last three main reasons which make the QAP a popular problem in combinatorial optimization. First, the number of re- life problems which are mathematically modeled by QAPs has been continuously increasing and the variety of the fields they belong to is astonishing. To recall just a restricted number among the applications of the QAP let us mention placement problems, scheduling, manufacturing, VLSI design, statistical data analysis, and parallel and distributed computing. Secondly, a number of other well known c- binatorial optimization problems can be formulated as QAPs. Typical examples are the traveling salesman problem and a large number of optimization problems in graphs such as the maximum clique problem, the graph partitioning problem and the minimum feedback arc set problem. Finally, from a computational point of view the QAP is a very difficult problem. The QAP is not only NP-hard and - hard to approximate, but it is also practically intractable: it is generally considered as impossible to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits.
Handbook of Research on Natural Computing for Optimization Problems
Author: Mandal, Jyotsna Kumar
Publisher: IGI Global
ISBN: 1522500596
Category : Computers
Languages : en
Pages : 1199
Book Description
Nature-inspired computation is an interdisciplinary topic area that connects the natural sciences to computer science. Since natural computing is utilized in a variety of disciplines, it is imperative to research its capabilities in solving optimization issues. The Handbook of Research on Natural Computing for Optimization Problems discusses nascent optimization procedures in nature-inspired computation and the innovative tools and techniques being utilized in the field. Highlighting empirical research and best practices concerning various optimization issues, this publication is a comprehensive reference for researchers, academicians, students, scientists, and technology developers interested in a multidisciplinary perspective on natural computational systems.
Publisher: IGI Global
ISBN: 1522500596
Category : Computers
Languages : en
Pages : 1199
Book Description
Nature-inspired computation is an interdisciplinary topic area that connects the natural sciences to computer science. Since natural computing is utilized in a variety of disciplines, it is imperative to research its capabilities in solving optimization issues. The Handbook of Research on Natural Computing for Optimization Problems discusses nascent optimization procedures in nature-inspired computation and the innovative tools and techniques being utilized in the field. Highlighting empirical research and best practices concerning various optimization issues, this publication is a comprehensive reference for researchers, academicians, students, scientists, and technology developers interested in a multidisciplinary perspective on natural computational systems.
Principal Concepts in Applied Evolutionary Computation: Emerging Trends
Author: Hong, Wei-Chiang Samuelson
Publisher: IGI Global
ISBN: 1466617500
Category : Computers
Languages : en
Pages : 400
Book Description
Increasingly powerful and diverse computing technologies have the potential to tackle ever greater and more complex problems and dilemmas in engineering and science disciplines. Principal Concepts in Applied Evolutionary Computation: Emerging Trends provides an introduction to the important interdisciplinary discipline of evolutionary computation, an artificial intelligence field that combines the principles of computational intelligence with the mechanisms of the theory of evolution. Academics and practicing field professionals will find this reference useful as they break into the emerging and complex world of evolutionary computation, learning to harness and utilize this exciting new interdisciplinary field.
Publisher: IGI Global
ISBN: 1466617500
Category : Computers
Languages : en
Pages : 400
Book Description
Increasingly powerful and diverse computing technologies have the potential to tackle ever greater and more complex problems and dilemmas in engineering and science disciplines. Principal Concepts in Applied Evolutionary Computation: Emerging Trends provides an introduction to the important interdisciplinary discipline of evolutionary computation, an artificial intelligence field that combines the principles of computational intelligence with the mechanisms of the theory of evolution. Academics and practicing field professionals will find this reference useful as they break into the emerging and complex world of evolutionary computation, learning to harness and utilize this exciting new interdisciplinary field.
A Connectionist Machine for Genetic Hillclimbing
Author: David Ackley
Publisher: Springer Science & Business Media
ISBN: 1461319978
Category : Computers
Languages : en
Pages : 268
Book Description
In the "black box function optimization" problem, a search strategy is required to find an extremal point of a function without knowing the structure of the function or the range of possible function values. Solving such problems efficiently requires two abilities. On the one hand, a strategy must be capable of learning while searching: It must gather global information about the space and concentrate the search in the most promising regions. On the other hand, a strategy must be capable of sustained exploration: If a search of the most promising region does not uncover a satisfactory point, the strategy must redirect its efforts into other regions of the space. This dissertation describes a connectionist learning machine that produces a search strategy called stochastic iterated genetic hillclimb ing (SIGH). Viewed over a short period of time, SIGH displays a coarse-to-fine searching strategy, like simulated annealing and genetic algorithms. However, in SIGH the convergence process is reversible. The connectionist implementation makes it possible to diverge the search after it has converged, and to recover coarse-grained informa tion about the space that was suppressed during convergence. The successful optimization of a complex function by SIGH usually in volves a series of such converge/diverge cycles.
Publisher: Springer Science & Business Media
ISBN: 1461319978
Category : Computers
Languages : en
Pages : 268
Book Description
In the "black box function optimization" problem, a search strategy is required to find an extremal point of a function without knowing the structure of the function or the range of possible function values. Solving such problems efficiently requires two abilities. On the one hand, a strategy must be capable of learning while searching: It must gather global information about the space and concentrate the search in the most promising regions. On the other hand, a strategy must be capable of sustained exploration: If a search of the most promising region does not uncover a satisfactory point, the strategy must redirect its efforts into other regions of the space. This dissertation describes a connectionist learning machine that produces a search strategy called stochastic iterated genetic hillclimb ing (SIGH). Viewed over a short period of time, SIGH displays a coarse-to-fine searching strategy, like simulated annealing and genetic algorithms. However, in SIGH the convergence process is reversible. The connectionist implementation makes it possible to diverge the search after it has converged, and to recover coarse-grained informa tion about the space that was suppressed during convergence. The successful optimization of a complex function by SIGH usually in volves a series of such converge/diverge cycles.
Nature-Inspired Methods for Metaheuristics Optimization
Author: Fouad Bennis
Publisher: Springer Nature
ISBN: 3030264580
Category : Business & Economics
Languages : en
Pages : 503
Book Description
This book gathers together a set of chapters covering recent development in optimization methods that are inspired by nature. The first group of chapters describes in detail different meta-heuristic algorithms, and shows their applicability using some test or real-world problems. The second part of the book is especially focused on advanced applications and case studies. They span different engineering fields, including mechanical, electrical and civil engineering, and earth/environmental science, and covers topics such as robotics, water management, process optimization, among others. The book covers both basic concepts and advanced issues, offering a timely introduction to nature-inspired optimization method for newcomers and students, and a source of inspiration as well as important practical insights to engineers and researchers.
Publisher: Springer Nature
ISBN: 3030264580
Category : Business & Economics
Languages : en
Pages : 503
Book Description
This book gathers together a set of chapters covering recent development in optimization methods that are inspired by nature. The first group of chapters describes in detail different meta-heuristic algorithms, and shows their applicability using some test or real-world problems. The second part of the book is especially focused on advanced applications and case studies. They span different engineering fields, including mechanical, electrical and civil engineering, and earth/environmental science, and covers topics such as robotics, water management, process optimization, among others. The book covers both basic concepts and advanced issues, offering a timely introduction to nature-inspired optimization method for newcomers and students, and a source of inspiration as well as important practical insights to engineers and researchers.
Computational Intelligence-based Optimization Algorithms
Author: Babak Zolghadr-Asli
Publisher: CRC Press
ISBN: 1000964701
Category : Computers
Languages : en
Pages : 357
Book Description
Computational intelligence-based optimization methods, also known as metaheuristic optimization algorithms, are a popular topic in mathematical programming. These methods have bridged the gap between various approaches and created a new school of thought to solve real-world optimization problems. In this book, we have selected some of the most effective and renowned algorithms in the literature. These algorithms are not only practical but also provide thought-provoking theoretical ideas to help readers understand how they solve optimization problems. Each chapter includes a brief review of the algorithm’s background and the fields it has been used in. Additionally, Python code is provided for all algorithms at the end of each chapter, making this book a valuable resource for beginner and intermediate programmers looking to understand these algorithms.
Publisher: CRC Press
ISBN: 1000964701
Category : Computers
Languages : en
Pages : 357
Book Description
Computational intelligence-based optimization methods, also known as metaheuristic optimization algorithms, are a popular topic in mathematical programming. These methods have bridged the gap between various approaches and created a new school of thought to solve real-world optimization problems. In this book, we have selected some of the most effective and renowned algorithms in the literature. These algorithms are not only practical but also provide thought-provoking theoretical ideas to help readers understand how they solve optimization problems. Each chapter includes a brief review of the algorithm’s background and the fields it has been used in. Additionally, Python code is provided for all algorithms at the end of each chapter, making this book a valuable resource for beginner and intermediate programmers looking to understand these algorithms.
Principles of Sequencing and Scheduling
Author: Kenneth R. Baker
Publisher: John Wiley & Sons
ISBN: 1118626257
Category : Business & Economics
Languages : en
Pages : 407
Book Description
An up-to-date and comprehensive treatment of the fundamentals of scheduling theory, including recent advances and state-of-the-art topics Principles of Sequencing and Scheduling strikes a unique balance between theory and practice, providing an accessible introduction to the concepts, methods, and results of scheduling theory and its core topics. With real-world examples and up-to-date modeling techniques, the book equips readers with the basic knowledge needed for understanding scheduling theory and delving into its applications. The authors begin with an introduction and overview of sequencing and scheduling, including single-machine sequencing, optimization and heuristic solution methods, and models with earliness and tardiness penalties. The most current material on stochastic scheduling, including correct scheduling of safety time and the use of simulation for optimization, is then presented and integrated with deterministic models. Additional topical coverage includes: Extensions of the basic model Parallel-machine models Flow shop scheduling Scheduling groups of jobs The job shop problem Simulation models for the dynamic job shop Network methods for project scheduling Resource-constrained project scheduling Stochastic and safe scheduling Extensive end-of-chapter exercises are provided, some of which are spreadsheet-oriented, and link scheduling theory to the most popular analytic platform among today's students and practitioners—the Microsoft Office Excel® spreadsheet. Extensive references direct readers to additional literature, and the book's related Web site houses material that reinforces the book's concepts, including research notes, data sets, and examples from the text. Principles of Sequencing and Scheduling is an excellent book for courses on sequencing and scheduling at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, computer science, operations research, and engineering.
Publisher: John Wiley & Sons
ISBN: 1118626257
Category : Business & Economics
Languages : en
Pages : 407
Book Description
An up-to-date and comprehensive treatment of the fundamentals of scheduling theory, including recent advances and state-of-the-art topics Principles of Sequencing and Scheduling strikes a unique balance between theory and practice, providing an accessible introduction to the concepts, methods, and results of scheduling theory and its core topics. With real-world examples and up-to-date modeling techniques, the book equips readers with the basic knowledge needed for understanding scheduling theory and delving into its applications. The authors begin with an introduction and overview of sequencing and scheduling, including single-machine sequencing, optimization and heuristic solution methods, and models with earliness and tardiness penalties. The most current material on stochastic scheduling, including correct scheduling of safety time and the use of simulation for optimization, is then presented and integrated with deterministic models. Additional topical coverage includes: Extensions of the basic model Parallel-machine models Flow shop scheduling Scheduling groups of jobs The job shop problem Simulation models for the dynamic job shop Network methods for project scheduling Resource-constrained project scheduling Stochastic and safe scheduling Extensive end-of-chapter exercises are provided, some of which are spreadsheet-oriented, and link scheduling theory to the most popular analytic platform among today's students and practitioners—the Microsoft Office Excel® spreadsheet. Extensive references direct readers to additional literature, and the book's related Web site houses material that reinforces the book's concepts, including research notes, data sets, and examples from the text. Principles of Sequencing and Scheduling is an excellent book for courses on sequencing and scheduling at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, computer science, operations research, and engineering.