Author: Omid Bozorg-Haddad
Publisher: John Wiley & Sons
ISBN: 1119386993
Category : Mathematics
Languages : en
Pages : 306
Book Description
A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.
Meta-heuristic and Evolutionary Algorithms for Engineering Optimization
Author: Omid Bozorg-Haddad
Publisher: John Wiley & Sons
ISBN: 1119386993
Category : Mathematics
Languages : en
Pages : 306
Book Description
A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.
Publisher: John Wiley & Sons
ISBN: 1119386993
Category : Mathematics
Languages : en
Pages : 306
Book Description
A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.
Evolutionary Algorithms and Intelligent Tools in Engineering Optimization
Author: William Annicchiarico
Publisher: WIT Press (UK)
ISBN:
Category : Computers
Languages : en
Pages : 368
Book Description
Evolutionary algorithms are very powerful techniques used to find solutions to real-world search and optimisation problems. In this text, a large spectrum of innovative evolutionary and intelligence methods are presented and used for solving various application problems.
Publisher: WIT Press (UK)
ISBN:
Category : Computers
Languages : en
Pages : 368
Book Description
Evolutionary algorithms are very powerful techniques used to find solutions to real-world search and optimisation problems. In this text, a large spectrum of innovative evolutionary and intelligence methods are presented and used for solving various application problems.
Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques
Author: Chis, Monica
Publisher: IGI Global
ISBN: 1615208100
Category : Education
Languages : en
Pages : 282
Book Description
Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.
Publisher: IGI Global
ISBN: 1615208100
Category : Education
Languages : en
Pages : 282
Book Description
Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.
Evolutionary Optimization Algorithms
Author: Dan Simon
Publisher: John Wiley & Sons
ISBN: 1118659503
Category : Mathematics
Languages : en
Pages : 776
Book Description
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Publisher: John Wiley & Sons
ISBN: 1118659503
Category : Mathematics
Languages : en
Pages : 776
Book Description
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II
Author: Oliver Schütze
Publisher: Springer Science & Business Media
ISBN: 3642315194
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
This book comprises a selection of papers from the EVOLVE 2012 held in Mexico City, Mexico. The aim of the EVOLVE is to build a bridge between probability, set oriented numerics and evolutionary computing, as to identify new common and challenging research aspects. The conference is also intended to foster a growing interest for robust and efficient methods with a sound theoretical background. EVOLVE is intended to unify theory-inspired methods and cutting-edge techniques ensuring performance guarantee factors. By gathering researchers with different backgrounds, a unified view and vocabulary can emerge where the theoretical advancements may echo in different domains. Summarizing, the EVOLVE focuses on challenging aspects arising at the passage from theory to new paradigms and aims to provide a unified view while raising questions related to reliability, performance guarantees and modeling. The papers of the EVOLVE 2012 make a contribution to this goal.
Publisher: Springer Science & Business Media
ISBN: 3642315194
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
This book comprises a selection of papers from the EVOLVE 2012 held in Mexico City, Mexico. The aim of the EVOLVE is to build a bridge between probability, set oriented numerics and evolutionary computing, as to identify new common and challenging research aspects. The conference is also intended to foster a growing interest for robust and efficient methods with a sound theoretical background. EVOLVE is intended to unify theory-inspired methods and cutting-edge techniques ensuring performance guarantee factors. By gathering researchers with different backgrounds, a unified view and vocabulary can emerge where the theoretical advancements may echo in different domains. Summarizing, the EVOLVE focuses on challenging aspects arising at the passage from theory to new paradigms and aims to provide a unified view while raising questions related to reliability, performance guarantees and modeling. The papers of the EVOLVE 2012 make a contribution to this goal.
The Master Algorithm
Author: Pedro Domingos
Publisher: Basic Books
ISBN: 0465061923
Category : Computers
Languages : en
Pages : 354
Book Description
Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
Publisher: Basic Books
ISBN: 0465061923
Category : Computers
Languages : en
Pages : 354
Book Description
Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
Evolutionary Computation with Intelligent Systems
Author: R.S. Chauhan
Publisher: CRC Press
ISBN: 1000550508
Category : Business & Economics
Languages : en
Pages : 325
Book Description
This book focuses on cutting-edge innovations and core theories, principles, and algorithms applicable to a wide area. Real-life applications, case studies, and examples are included along with emerging trends, design, and optimized solutions pivoting around the needs of Society 5.0. Evolutionary Computation with Intelligent Systems: A Multidisciplinary Approach to Society 5.0 provides a holistic view of evolutionary computation techniques including principles, procedures, and future applications with real-life examples. The book comprehensively explains evolutionary computation, design, principles, development trends, and optimization and describes how it can transform the operating context of the organization. It exemplifies the potential of evolutionary computation for the next generation and the role of cloud computing in shaping Society 5.0. It also provides insight into various platforms, paradigms, techniques, and tools used in diverse fields. This book appeals to a variety of readers such as academicians, researchers, research scholars, and postgraduates.
Publisher: CRC Press
ISBN: 1000550508
Category : Business & Economics
Languages : en
Pages : 325
Book Description
This book focuses on cutting-edge innovations and core theories, principles, and algorithms applicable to a wide area. Real-life applications, case studies, and examples are included along with emerging trends, design, and optimized solutions pivoting around the needs of Society 5.0. Evolutionary Computation with Intelligent Systems: A Multidisciplinary Approach to Society 5.0 provides a holistic view of evolutionary computation techniques including principles, procedures, and future applications with real-life examples. The book comprehensively explains evolutionary computation, design, principles, development trends, and optimization and describes how it can transform the operating context of the organization. It exemplifies the potential of evolutionary computation for the next generation and the role of cloud computing in shaping Society 5.0. It also provides insight into various platforms, paradigms, techniques, and tools used in diverse fields. This book appeals to a variety of readers such as academicians, researchers, research scholars, and postgraduates.
GeoComputation, Second Edition
Author: Robert J. Abrahart
Publisher: CRC Press
ISBN: 1466503289
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
A revision of Openshaw and Abrahart’s seminal work, GeoComputation, Second Edition retains influences of its originators while also providing updated, state-of-the-art information on changes in the computational environment. In keeping with the field’s development, this new edition takes a broader view and provides comprehensive coverage across the field of GeoComputation. See What’s New in the Second Edition: Coverage of ubiquitous computing, the GeoWeb, reproducible research, open access, and agent-based modelling Expanded chapter on Genetic Programming and a separate chapter developed on Evolutionary Algorithms Ten chapters updated by the same or new authors and eight new chapters added to reflect state of the art Each chapter is a stand-alone entity that covers a particular topic. You can simply dip in and out or read it from cover to cover. The opening chapter by Stan Openshaw has been preserved, with only a limited number of minor essential modifications having been enacted. This is not just a matter of respect. Openshaw’s work is eloquent, prophetic, and his overall message remains largely unchanged. In contrast to other books on this subject, GeoComputation: Second Edition supplies a state-of-the-art review of all major areas in GeoComputation with chapters written especially for this book by invited specialists. This approach helps develop and expand a computational culture, one that can exploit the ever-increasing richness of modern geographical and geospatial datasets. It also supplies an instructional guide to be kept within easy reach for regular access and when need arises.
Publisher: CRC Press
ISBN: 1466503289
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
A revision of Openshaw and Abrahart’s seminal work, GeoComputation, Second Edition retains influences of its originators while also providing updated, state-of-the-art information on changes in the computational environment. In keeping with the field’s development, this new edition takes a broader view and provides comprehensive coverage across the field of GeoComputation. See What’s New in the Second Edition: Coverage of ubiquitous computing, the GeoWeb, reproducible research, open access, and agent-based modelling Expanded chapter on Genetic Programming and a separate chapter developed on Evolutionary Algorithms Ten chapters updated by the same or new authors and eight new chapters added to reflect state of the art Each chapter is a stand-alone entity that covers a particular topic. You can simply dip in and out or read it from cover to cover. The opening chapter by Stan Openshaw has been preserved, with only a limited number of minor essential modifications having been enacted. This is not just a matter of respect. Openshaw’s work is eloquent, prophetic, and his overall message remains largely unchanged. In contrast to other books on this subject, GeoComputation: Second Edition supplies a state-of-the-art review of all major areas in GeoComputation with chapters written especially for this book by invited specialists. This approach helps develop and expand a computational culture, one that can exploit the ever-increasing richness of modern geographical and geospatial datasets. It also supplies an instructional guide to be kept within easy reach for regular access and when need arises.
Advances of Computational Intelligence in Industrial Systems
Author: Ying Liu
Publisher: Springer Science & Business Media
ISBN: 3540782966
Category : Computers
Languages : en
Pages : 387
Book Description
Computational Intelligence (CI) has emerged as a rapidly growing field over the past decade. This volume reports the exploration of CI frontiers with an emphasis on a broad spectrum of real-world applications. Such a collection of chapters has presented the state-of-the-art of CI applications in industry and will be an essential resource for professionals and researchers who wish to learn and spot the opportunities in applying CI techniques to their particular problems.
Publisher: Springer Science & Business Media
ISBN: 3540782966
Category : Computers
Languages : en
Pages : 387
Book Description
Computational Intelligence (CI) has emerged as a rapidly growing field over the past decade. This volume reports the exploration of CI frontiers with an emphasis on a broad spectrum of real-world applications. Such a collection of chapters has presented the state-of-the-art of CI applications in industry and will be an essential resource for professionals and researchers who wish to learn and spot the opportunities in applying CI techniques to their particular problems.
Soft Computing
Author: Luigi Fortuna
Publisher: Springer Science & Business Media
ISBN: 1447103572
Category : Computers
Languages : en
Pages : 275
Book Description
The book presents a clear understanding of a new type of computation system, the Cellular Neural Network (CNN), which has been successfully applied to the solution of many heavy computation problems, mainly in the fields of image processing and complex partial differential equations. The text describes how CNN will improve the soft-computation toolbox, and examines the many applications of soft computing to complex systems.
Publisher: Springer Science & Business Media
ISBN: 1447103572
Category : Computers
Languages : en
Pages : 275
Book Description
The book presents a clear understanding of a new type of computation system, the Cellular Neural Network (CNN), which has been successfully applied to the solution of many heavy computation problems, mainly in the fields of image processing and complex partial differential equations. The text describes how CNN will improve the soft-computation toolbox, and examines the many applications of soft computing to complex systems.