Author: Ivan Zelinka
Publisher: Springer
ISBN: 3642107079
Category : Technology & Engineering
Languages : en
Pages : 533
Book Description
This book discusses the mutual intersection of two fields of research: evolutionary computation, which can handle tasks such as control of various chaotic systems, and deterministic chaos, which is investigated as a behavioral part of evolutionary algorithms.
Evolutionary Algorithms and Chaotic Systems
Author: Ivan Zelinka
Publisher: Springer
ISBN: 3642107079
Category : Technology & Engineering
Languages : en
Pages : 533
Book Description
This book discusses the mutual intersection of two fields of research: evolutionary computation, which can handle tasks such as control of various chaotic systems, and deterministic chaos, which is investigated as a behavioral part of evolutionary algorithms.
Publisher: Springer
ISBN: 3642107079
Category : Technology & Engineering
Languages : en
Pages : 533
Book Description
This book discusses the mutual intersection of two fields of research: evolutionary computation, which can handle tasks such as control of various chaotic systems, and deterministic chaos, which is investigated as a behavioral part of evolutionary algorithms.
Introduction to Evolutionary Algorithms
Author: Xinjie Yu
Publisher: Springer Science & Business Media
ISBN: 1849961298
Category : Computers
Languages : en
Pages : 427
Book Description
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.
Publisher: Springer Science & Business Media
ISBN: 1849961298
Category : Computers
Languages : en
Pages : 427
Book Description
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.
Evolutionary Algorithms, Swarm Dynamics and Complex Networks
Author: Ivan Zelinka
Publisher: Springer
ISBN: 3662556634
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Evolutionary algorithms constitute a class of well-known algorithms, which are designed based on the Darwinian theory of evolution and Mendelian theory of heritage. They are partly based on random and partly based on deterministic principles. Due to this nature, it is challenging to predict and control its performance in solving complex nonlinear problems. Recently, the study of evolutionary dynamics is focused not only on the traditional investigations but also on the understanding and analyzing new principles, with the intention of controlling and utilizing their properties and performances toward more effective real-world applications. In this book, based on many years of intensive research of the authors, is proposing novel ideas about advancing evolutionary dynamics towards new phenomena including many new topics, even the dynamics of equivalent social networks. In fact, it includes more advanced complex networks and incorporates them with the CMLs (coupled map lattices), which are usually used for spatiotemporal complex systems simulation and analysis, based on the observation that chaos in CML can be controlled, so does evolution dynamics. All the chapter authors are, to the best of our knowledge, originators of the ideas mentioned above and researchers on evolutionary algorithms and chaotic dynamics as well as complex networks, who will provide benefits to the readers regarding modern scientific research on related subjects.
Publisher: Springer
ISBN: 3662556634
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Evolutionary algorithms constitute a class of well-known algorithms, which are designed based on the Darwinian theory of evolution and Mendelian theory of heritage. They are partly based on random and partly based on deterministic principles. Due to this nature, it is challenging to predict and control its performance in solving complex nonlinear problems. Recently, the study of evolutionary dynamics is focused not only on the traditional investigations but also on the understanding and analyzing new principles, with the intention of controlling and utilizing their properties and performances toward more effective real-world applications. In this book, based on many years of intensive research of the authors, is proposing novel ideas about advancing evolutionary dynamics towards new phenomena including many new topics, even the dynamics of equivalent social networks. In fact, it includes more advanced complex networks and incorporates them with the CMLs (coupled map lattices), which are usually used for spatiotemporal complex systems simulation and analysis, based on the observation that chaos in CML can be controlled, so does evolution dynamics. All the chapter authors are, to the best of our knowledge, originators of the ideas mentioned above and researchers on evolutionary algorithms and chaotic dynamics as well as complex networks, who will provide benefits to the readers regarding modern scientific research on related subjects.
Evolutionary Algorithms and Chaotic Systems
Author: Ivan Zelinka
Publisher:
ISBN: 9783642107085
Category : Artificial intelligence
Languages : en
Pages : 560
Book Description
This book discusses the mutual intersection of two interesting fields of research, i.e. deterministic chaos and evolutionary computation. Evolutionary computation which are able to handle tasks such as control of various chaotic systems and synthesis of their structure are explored, while deterministic chaos is investigated as a behavioral part of evolutionary algorithms. This book is targeted for a number of audiences. Firstly, it will be an instructional material for senior undergraduate and entry-point graduate students in computer science, physics, applied mathematics, and engineering, who are working in the area of deterministic chaos and evolutionary algorithms. Secondly, researchers who desire to know how to apply evolutionary techniques on chaos control as well as researchers interested in the emergence of chaos in evolutionary algorithms will find this book a very useful tool and starting point. And finally, this book can be viewed as a resource handbook and material for practitioners who want to apply these methods that solve practical problems to their challenging applications.
Publisher:
ISBN: 9783642107085
Category : Artificial intelligence
Languages : en
Pages : 560
Book Description
This book discusses the mutual intersection of two interesting fields of research, i.e. deterministic chaos and evolutionary computation. Evolutionary computation which are able to handle tasks such as control of various chaotic systems and synthesis of their structure are explored, while deterministic chaos is investigated as a behavioral part of evolutionary algorithms. This book is targeted for a number of audiences. Firstly, it will be an instructional material for senior undergraduate and entry-point graduate students in computer science, physics, applied mathematics, and engineering, who are working in the area of deterministic chaos and evolutionary algorithms. Secondly, researchers who desire to know how to apply evolutionary techniques on chaos control as well as researchers interested in the emergence of chaos in evolutionary algorithms will find this book a very useful tool and starting point. And finally, this book can be viewed as a resource handbook and material for practitioners who want to apply these methods that solve practical problems to their challenging applications.
Soft Computing
Author: Luigi Fortuna
Publisher: Springer Science & Business Media
ISBN: 1447103572
Category : Computers
Languages : en
Pages : 275
Book Description
The book presents a clear understanding of a new type of computation system, the Cellular Neural Network (CNN), which has been successfully applied to the solution of many heavy computation problems, mainly in the fields of image processing and complex partial differential equations. The text describes how CNN will improve the soft-computation toolbox, and examines the many applications of soft computing to complex systems.
Publisher: Springer Science & Business Media
ISBN: 1447103572
Category : Computers
Languages : en
Pages : 275
Book Description
The book presents a clear understanding of a new type of computation system, the Cellular Neural Network (CNN), which has been successfully applied to the solution of many heavy computation problems, mainly in the fields of image processing and complex partial differential equations. The text describes how CNN will improve the soft-computation toolbox, and examines the many applications of soft computing to complex systems.
Evolutionary Robotics
Author: Lingfeng Wang
Publisher: World Scientific
ISBN: 9812773142
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
This invaluable book comprehensively describes evolutionary robotics and computational intelligence, and how different computational intelligence techniques are applied to robotic system design. It embraces the most widely used evolutionary approaches with their merits and drawbacks, presents some related experiments for robotic behavior evolution and the results achieved, and shows promising future research directions. Clarity of explanation is emphasized such that a modest knowledge of basic evolutionary computation, digital circuits and engineering design will suffice for a thorough understanding of the material. The book is ideally suited to computer scientists, practitioners and researchers keen on computational intelligence techniques, especially the evolutionary algorithms in autonomous robotics at both the hardware and software levels. Sample Chapter(s). Chapter 1: Artificial Evolution Based Autonomous Robot Navigation (184 KB). Contents: Artificial Evolution Based Autonomous Robot Navigation; Evolvable Hardware in Evolutionary Robotics; FPGA-Based Autonomous Robot Navigation via Intrinsic Evolution; Intelligent Sensor Fusion and Learning for Autonomous Robot Navigation; Task-Oriented Developmental Learning for Humanoid Robots; Bipedal Walking Through Reinforcement Learning; Swing Time Generation for Bipedal Walking Control Using GA Tuned Fuzzy Logic Controller; Bipedal Walking: Stance Ankle Behavior Optimization Using Genetic Algorithm. Readership: Researchers in evolutionary robotics, and graduate and advanced undergraduate students in computational intelligence.
Publisher: World Scientific
ISBN: 9812773142
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
This invaluable book comprehensively describes evolutionary robotics and computational intelligence, and how different computational intelligence techniques are applied to robotic system design. It embraces the most widely used evolutionary approaches with their merits and drawbacks, presents some related experiments for robotic behavior evolution and the results achieved, and shows promising future research directions. Clarity of explanation is emphasized such that a modest knowledge of basic evolutionary computation, digital circuits and engineering design will suffice for a thorough understanding of the material. The book is ideally suited to computer scientists, practitioners and researchers keen on computational intelligence techniques, especially the evolutionary algorithms in autonomous robotics at both the hardware and software levels. Sample Chapter(s). Chapter 1: Artificial Evolution Based Autonomous Robot Navigation (184 KB). Contents: Artificial Evolution Based Autonomous Robot Navigation; Evolvable Hardware in Evolutionary Robotics; FPGA-Based Autonomous Robot Navigation via Intrinsic Evolution; Intelligent Sensor Fusion and Learning for Autonomous Robot Navigation; Task-Oriented Developmental Learning for Humanoid Robots; Bipedal Walking Through Reinforcement Learning; Swing Time Generation for Bipedal Walking Control Using GA Tuned Fuzzy Logic Controller; Bipedal Walking: Stance Ankle Behavior Optimization Using Genetic Algorithm. Readership: Researchers in evolutionary robotics, and graduate and advanced undergraduate students in computational intelligence.
Capture Dynamics and Chaotic Motions in Celestial Mechanics
Author: Edward Belbruno
Publisher: Princeton University Press
ISBN: 069118643X
Category : Mathematics
Languages : en
Pages : 232
Book Description
This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel. Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions. Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.
Publisher: Princeton University Press
ISBN: 069118643X
Category : Mathematics
Languages : en
Pages : 232
Book Description
This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel. Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions. Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.
Self-Organizing Migrating Algorithm
Author: Donald Davendra
Publisher: Springer
ISBN: 3319281615
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
This book brings together the current state of-the-art research in Self Organizing Migrating Algorithm (SOMA) as a novel population-based evolutionary algorithm, modeled on the predator-prey relationship, by its leading practitioners. As the first ever book on SOMA, this book is geared towards graduate students, academics and researchers, who are looking for a good optimization algorithm for their applications. This book presents the methodology of SOMA, covering both the real and discrete domains, and its various implementations in different research areas. The easy-to-follow and implement methodology used in the book will make it easier for a reader to implement, modify and utilize SOMA.
Publisher: Springer
ISBN: 3319281615
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
This book brings together the current state of-the-art research in Self Organizing Migrating Algorithm (SOMA) as a novel population-based evolutionary algorithm, modeled on the predator-prey relationship, by its leading practitioners. As the first ever book on SOMA, this book is geared towards graduate students, academics and researchers, who are looking for a good optimization algorithm for their applications. This book presents the methodology of SOMA, covering both the real and discrete domains, and its various implementations in different research areas. The easy-to-follow and implement methodology used in the book will make it easier for a reader to implement, modify and utilize SOMA.
An Introduction to Genetic Algorithms
Author: Melanie Mitchell
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226
Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226
Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Advances in Chaos Theory and Intelligent Control
Author: Ahmad Taher Azar
Publisher: Springer
ISBN: 3319303406
Category : Technology & Engineering
Languages : en
Pages : 869
Book Description
The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate students, researchers, and practitioners in the areas of chaos theory and intelligent control.
Publisher: Springer
ISBN: 3319303406
Category : Technology & Engineering
Languages : en
Pages : 869
Book Description
The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate students, researchers, and practitioners in the areas of chaos theory and intelligent control.