Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO2 capture. The project objective was to address the viability and accelerate development of a solid-based CO2 capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO2 capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO2 removal with the sorbents evaluated under this program, it was useful to compare the CO2 removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO2 for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO2 removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO2 capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO2 uptake rate. Th ...

Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO2 capture. The project objective was to address the viability and accelerate development of a solid-based CO2 capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO2 capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO2 removal with the sorbents evaluated under this program, it was useful to compare the CO2 removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO2 for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO2 removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO2 capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO2 uptake rate. Th ...

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO2 capture. The project objective was to address the viability and accelerate development of a solid-based CO2 capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO2 capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO2 removal with the sorbents evaluated under this program, it was useful to compare the CO2 removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the cocurrent adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO2 for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO2 removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO2 capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO2 uptake rate. Three additional supported amine materials, sorbents AX, F, and BN, were selected for evaluation using the 1 kW pilot at Sherco. Sorbent AX was operated in batch mode and performed similarly to sorbent R (i.e. could achieve up to 90% removal when given adequate regeneration time). Sorbent BN was not expected to be subject to the same mass diffusion limitations as experienced with sorbent R. When sorbent BN was used in continuous mode the steady state CO2 removal was approximately double that of sorbent R, which highlighted the importance of sorbents without kinetic limitations.

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 265

Get Book Here

Book Description
ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was primarily the result of sorbent circulation limitations at operating temperatures combined with pre-loading of the sorbent with CO2 prior to entering the adsorber. Specifically, CO2-rich gas was utilized to convey sorbent from the regenerator to the adsorber. This gas was nominally 45°C below the regenerator temperature during testing. ADA's post-combustion capture system with modifications to overcome pilot constraints, in conjunction with incorporating a sorbent with CO2 working capacity of 15 g CO2/100 g sorbent and a contact time of 10 to 15 minutes or less with flue gas could provide significant cost and performance benefits when compared to an MEA system.

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
TDA Research, Inc. has developed a novel sorbent based post-combustion CO2 removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO2 capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO2 produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO2 produced with the lowest possible increase in the cost of energy.

Topical Report 5

Topical Report 5 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
ADA-ES has completed an extensive sorbent screening program funded primarily through DOE NETL cooperative agreement DE-NT0005649 with support from EPRI and industry cost-share participants. Tests were completed on simulated and actual flue gas. The overall project objective is to address the viability and accelerate development of a solid-based postcombustion CO2 capture technology that can be retrofit to the existing fleet of coal-fired power plants. An important component of the viability assessment was to evaluate the state of development of sorbents and measure key performance characteristics under realistic operating conditions.

Evaluation of Sorbents for the Cleanup of Coal-derived Synthesis Gas at Elevated Temperatures

Evaluation of Sorbents for the Cleanup of Coal-derived Synthesis Gas at Elevated Temperatures PDF Author: David Joseph Couling
Publisher:
ISBN:
Category :
Languages : en
Pages : 182

Get Book Here

Book Description
Integrated Gasification Combined Cycle (IGCC) with carbon dioxide capture is a promising technology to produce electricity from coal at a higher efficiency than with traditional subcritical pulverized coal (PC) power plants. As with any coal-based technology, however, it is of critical importance to develop efficient techniques to reduce the emissions of its many environmental pollutants, including not only carbon dioxide, but also sulfur and trace metals such as lead or mercury. One potential method to improve the efficiency for IGCC is through the use of solid sorbents that operate at elevated temperatures. Because many of these technologies are in their infancy and have yet to be commercially demonstrated, a strong desire exists to develop methods to critically evaluate these technologies more rapidly and inexpensively than can be done through experiments alone. In this thesis we applied computational techniques to investigate the feasibility of sorbents for the warm temperature removal of two key pollutants, carbon dioxide and mercury. We developed pressure swing adsorption models for the removal of carbon dioxide using both metal oxide and metal hydroxide sorbents and incorporated them into IGCC process simulations in Aspen Plus in order to evaluate the energy penalties associated with using these carbon dioxide capture technologies. We identified the optimal properties of CO2 sorbents for this application. Although warm CO2 capture using solid sorbents could lead to slight efficiency increases over conventional cold cleanup methods, the potential gains are much smaller than previously estimated. In addition, we used density functional theory to screen binary metal alloys, metal oxides, and metal sulfides as potential sorbents for mercury capture. We computed the thermochemistry of 40 different potential mercury sorbents to evaluate their affinity for mercury at the low concentrations and elevated temperatures found in the coal gas stream. We also evaluated the tendency of these sorbent materials to react with major components of the gas stream, such as hydrogen or steam. Finally, we tested the mercury adsorption characteristics of three of the most promising materials experimentally. Our experimental observations showed good qualitative agreement with our density functional theory calculations.

Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This document summarizes the work performed on Cooperative Agreement DE-FE0000465,?Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture,? during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO2 from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO2 capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO2) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO2 from a gas stream containing CO2, carbon monoxide (CO), and hydrogen (H2) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO2, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO2 capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent materials to seven that were deemed thermodynamically viable for the process. Molecular modeling was used to guide sorbent synthesis through first principles simulations of adsorption and regeneration. Molecular dynamics simulations also modeled the impact of gas phase impurities common in gasified coal streams (e.g., H2S) on the adsorption process. The role of inert dopants added for mechanical durability to active sorbent materials was also investigated through molecular simulations. Process simulations were conducted throughout the project to help determine the overall feasibility of the process and to help guide laboratory operating conditions. A large component of the program was the development of sorbent synthesis methods. Three different approaches were used: mechanical alloying (MA), flame spray pyrolysis (FSP), and ultrasonic spray pyrolysis (USP). Sorbents were characterized by a host of analytical techniques and screened for SEWGS performance using a thermogravimetric analyzer (TGA). A feedback loop from screening efforts to sorbent synthesis was established and used throughout the project lifetime. High temperature, high pressure reactor (HTPR) systems were constructed to test the sorbents at conditions mimicking the SEWGS process as identified through process modeling. These experiments were conducted at the laboratory scale to examine sorbents for their CO2 capacity, conversion of CO to CO2, and impacts of adsorption and regeneration conditions, and syngas composition (including impurities and H2O:CO ratio). Results from the HTPR testing showed sorbents with as high as 0.4 g{sub CO2}/g{sub sorbent} capacity with the ability to initially shift the WGS completely towards CO2/H2. A longer term experiment with a simple syngas matrix and N2/steam regeneration stream showed a USP sorbent to be stable through 50 adsorption-regeneration cycles, though the sorbent tested had a somewhat diminished initial capacity. The program culminated in a technoeconomic assessment in which two different approaches were taken; one a ...

Theoretical Screening of Mixed Solid Sorbent for Applications to CO{sub 2} Capture Technology

Theoretical Screening of Mixed Solid Sorbent for Applications to CO{sub 2} Capture Technology PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.

ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL.

ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Novel sorbent evaluations at We Energies' Pleasant Prairie Power Plant (P4) Unit 1 (no SCR in place) have been completed. Nineteen sorbents were evaluated for mercury control. A batch injection rate of 1 lb/Mmacf for 1 hour was conducted for screening purposes at a temperature of 300 F. Four sorbents were further evaluated at three injection rates and two temperatures. The multi-pollutant control test system (PoCT) was installed on P4's Unit 2 (with an SCR) and sorbent evaluations are continuing. Evaluations will continue through the end of January 2004. Tests and analysis on samples from Powerton and Valley to yield waste characterization results for the COHPAC long-term tests are continuing. A no-cost time extension for work to be completed by March 31, 2004 was granted by DOE/NETL.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 366

Get Book Here

Book Description