Evaluation of Glare and Lighting Performance in Nighttime Highway Construction Projects

Evaluation of Glare and Lighting Performance in Nighttime Highway Construction Projects PDF Author: Ibrahim S. Odeh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
An increasing amount of highway repair and construction work is being performed during the off-peak nighttime hours. Nighttime construction is advocated as a way to mitigate the impact of construction operations on the traveling public, shorten the duration of construction operations, and reduce the potential for work zone accidents. However, the utilization and placement of lighting equipment to illuminate the work zone may cause harmful levels of glare for the traveling public. This type of nighttime glare needs to be controlled and minimized to ensure safety for the traveling public and construction workers. This research study focused on studying the veiling luminance ratio (glare) experienced by drive-by motorists in lanes adjacent to nighttime work zones. The major objectives of this study are to: (1) provide an in-depth comprehensive review of the latest literature on the causes of glare and the existing practices that can be used to quantify and control glare during nighttime highway construction; (2) identify practical factors that affect the measurement of veiling luminance ratio (glare) in and around nighttime work zones; (3) analyze and compare the levels of glare and lighting performance generated by typical lighting arrangements in nighttime highway construction; (4) evaluate the impact of lighting design parameters on glare and provide practical recommendations to reduce and control lighting glare in and around nighttime work zones; (5) develop a practical model that can be utilized by resident engineers and contractors to measure and quantify veiling luminance ratio (glare) experienced by drive-by motorists near nighttime highway construction sites; and (6) investigate and analyze existing recommendations on the maximum allowable levels of veiling luminance ratio (glare) that can be tolerated by nighttime drivers from similar lighting sources. In order to achieve these objectives, the study was conducted in four major tasks that focused on: (1) conducting a comprehensive literature review; (2) visiting and studying a number of nighttime highway construction projects; (3) conducting field studies to evaluate the performance of selected lighting arrangements; and (4) developing practical models to measure and control the levels of glare experienced by drive-by motorists in lanes adjacent to nighttime work zones. In the first task of the project, a comprehensive literature review was conducted to study the latest research and developments on veiling luminance ratio (glare) and its effects on drivers and construction workers during nighttime highway construction work. Sources of information included publications from professional societies, journal articles, on-line databases, and contacts from DOT0́9s. The review of the literature focused on: (1) lighting requirements for nighttime highway construction; (2) causes and sources of glare in nighttime work zones, including fixed roadway lighting, vehicles headlamps, and nighttime lighting equipment in the work zone; (3) the main types of glare which can be classified based on its source as either direct or reflected glare; and based on its impact as discomfort, disabling, or blinding glare; (4) available procedures to measure and quantify discomfort and disabling glare; (5) existing methods to quantify pavement/adaptation luminance which is essential in measuring discomfort and disabling glare; (6) available recommendations by State DOTs and professional organizations to control glare; and (7) existing guidelines and hardware for glare control. The second task involved site visits to a number of nighttime work zones to identify practical factors that affect the measurement of the veiling luminance ratio in nighttime construction sites. The site visits were conducted over a five-month period in order to gather data on the type of construction operations that are typically performed during nighttime hours, the type of lighting equipment used to illuminate the work area, and the levels of glare experienced by workers and motorists in and around the work zone. One of the main findings of these site visits was identifying a number of challenges and practical factors that significantly affect the measurement and quantification of the veiling luminance ratio (glare) in nighttime work zones. These practical factors were carefully considered during the development of the glare measurement model in this study to ensure its practicality and ease of use in nighttime work zones by resident engineers and contractors alike. Another important finding of the site visits was the observation that improper utilization and setup of construction lighting equipment may cause significant levels of glare for construction workers and drive-by motorists. In the third task, field experiments were conducted to study and evaluate the levels of lighting glare caused by commonly used lighting equipment in nighttime work zones. During these experiments, a total of 25 different lighting arrangements were tested over a period of 33 days from May 10, 2007 to June 12, 2007 at the Illinois Center for Transportation (ICT) in the University of Illinois at Urbana-Champaign. The objectives of these experiments were to: (1) analyze and compare the levels of glare and lighting performance generated by typical lighting arrangements in nighttime highway construction; and (2) provide practical recommendations for lighting arrangements to reduce and control lighting glare in and around nighttime work zones. The field tests were designed to evaluate the levels of glare and lighting performance generated by commonly used construction lighting equipment, including one balloon light, two balloon lights, three balloon lights, one light tower and one Nite Lite. The tests were also designed to study the impact of tested lighting parameters (i.e., type of light, height of light, aiming and rotation angles of light towers, and height of vehicle/observer) on the veiling luminance ratio experienced by drive-by motorists as well as their impact on the average horizontal illuminance and lighting uniformity ratio in the work area. Based on the findings from these tests, a number of practical recommendations were provided to control and reduce veiling luminance ratio/glare in and around nighttime work zones. The final (fourth) task of this study focused on the development of a practical model to measure and quantify veiling luminance ratio (glare) experienced by drive-by motorists in lanes adjacent to nighttime work zones. The model was designed to consider the practical factors that were identified during the site visits, including the need to provide a robust balance between practicality and accuracy to ensure that it can be efficiently and effectively used by resident engineers on nighttime highway construction sites. To ensure practicality, the model enables resident engineers to measure the required vertical illuminance data in safe locations inside the work zone while allowing the traffic in adjacent lanes to flow uninterrupted. These measurements can then be analyzed by newly developed regression models to accurately calculate the vertical illuminance values experienced by drivers from which the veiling luminance ratio (glare) can be derived. This task also analyzed existing recommendations on the maximum allowable levels of veiling luminance ratio (glare) that can be tolerated by nighttime drivers from various lighting sources, including roadway lighting, headlights of opposite traffic vehicles, and lighting equipment in nighttime work zones. The main research development of this study contribute to the advancement of current practice in highway construction and can lead to an increase in the safety of construction workers and the traveling public in and around the nighttime work zones. The outcome of this study will help in: (1) identifying practical factors and challenges that affect the measurements of glare in and around nighttime work zones; (2) evaluating and comparing the lighting performance and glare levels of typical construction lighting equipment that are commonly used in nighttime highway construction projects; (3) recommending practical lighting arrangements that generate acceptable levels of lighting glare for motorists and adequate levels of lighting performance for construction workers inside the work zone; (4) developing practical and safe model for measuring and quantifying the veiling luminance ratio experienced by drive-by motorists near nighttime highway construction sites; and (5) providing a baseline for Departments of Transportation (DOTs) to develop specifications and standards on how to control and quantify the levels of glare in nighttime highway construction projects.

Evaluation of Glare and Lighting Performance in Nighttime Highway Construction Projects

Evaluation of Glare and Lighting Performance in Nighttime Highway Construction Projects PDF Author: Ibrahim S. Odeh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
An increasing amount of highway repair and construction work is being performed during the off-peak nighttime hours. Nighttime construction is advocated as a way to mitigate the impact of construction operations on the traveling public, shorten the duration of construction operations, and reduce the potential for work zone accidents. However, the utilization and placement of lighting equipment to illuminate the work zone may cause harmful levels of glare for the traveling public. This type of nighttime glare needs to be controlled and minimized to ensure safety for the traveling public and construction workers. This research study focused on studying the veiling luminance ratio (glare) experienced by drive-by motorists in lanes adjacent to nighttime work zones. The major objectives of this study are to: (1) provide an in-depth comprehensive review of the latest literature on the causes of glare and the existing practices that can be used to quantify and control glare during nighttime highway construction; (2) identify practical factors that affect the measurement of veiling luminance ratio (glare) in and around nighttime work zones; (3) analyze and compare the levels of glare and lighting performance generated by typical lighting arrangements in nighttime highway construction; (4) evaluate the impact of lighting design parameters on glare and provide practical recommendations to reduce and control lighting glare in and around nighttime work zones; (5) develop a practical model that can be utilized by resident engineers and contractors to measure and quantify veiling luminance ratio (glare) experienced by drive-by motorists near nighttime highway construction sites; and (6) investigate and analyze existing recommendations on the maximum allowable levels of veiling luminance ratio (glare) that can be tolerated by nighttime drivers from similar lighting sources. In order to achieve these objectives, the study was conducted in four major tasks that focused on: (1) conducting a comprehensive literature review; (2) visiting and studying a number of nighttime highway construction projects; (3) conducting field studies to evaluate the performance of selected lighting arrangements; and (4) developing practical models to measure and control the levels of glare experienced by drive-by motorists in lanes adjacent to nighttime work zones. In the first task of the project, a comprehensive literature review was conducted to study the latest research and developments on veiling luminance ratio (glare) and its effects on drivers and construction workers during nighttime highway construction work. Sources of information included publications from professional societies, journal articles, on-line databases, and contacts from DOT0́9s. The review of the literature focused on: (1) lighting requirements for nighttime highway construction; (2) causes and sources of glare in nighttime work zones, including fixed roadway lighting, vehicles headlamps, and nighttime lighting equipment in the work zone; (3) the main types of glare which can be classified based on its source as either direct or reflected glare; and based on its impact as discomfort, disabling, or blinding glare; (4) available procedures to measure and quantify discomfort and disabling glare; (5) existing methods to quantify pavement/adaptation luminance which is essential in measuring discomfort and disabling glare; (6) available recommendations by State DOTs and professional organizations to control glare; and (7) existing guidelines and hardware for glare control. The second task involved site visits to a number of nighttime work zones to identify practical factors that affect the measurement of the veiling luminance ratio in nighttime construction sites. The site visits were conducted over a five-month period in order to gather data on the type of construction operations that are typically performed during nighttime hours, the type of lighting equipment used to illuminate the work area, and the levels of glare experienced by workers and motorists in and around the work zone. One of the main findings of these site visits was identifying a number of challenges and practical factors that significantly affect the measurement and quantification of the veiling luminance ratio (glare) in nighttime work zones. These practical factors were carefully considered during the development of the glare measurement model in this study to ensure its practicality and ease of use in nighttime work zones by resident engineers and contractors alike. Another important finding of the site visits was the observation that improper utilization and setup of construction lighting equipment may cause significant levels of glare for construction workers and drive-by motorists. In the third task, field experiments were conducted to study and evaluate the levels of lighting glare caused by commonly used lighting equipment in nighttime work zones. During these experiments, a total of 25 different lighting arrangements were tested over a period of 33 days from May 10, 2007 to June 12, 2007 at the Illinois Center for Transportation (ICT) in the University of Illinois at Urbana-Champaign. The objectives of these experiments were to: (1) analyze and compare the levels of glare and lighting performance generated by typical lighting arrangements in nighttime highway construction; and (2) provide practical recommendations for lighting arrangements to reduce and control lighting glare in and around nighttime work zones. The field tests were designed to evaluate the levels of glare and lighting performance generated by commonly used construction lighting equipment, including one balloon light, two balloon lights, three balloon lights, one light tower and one Nite Lite. The tests were also designed to study the impact of tested lighting parameters (i.e., type of light, height of light, aiming and rotation angles of light towers, and height of vehicle/observer) on the veiling luminance ratio experienced by drive-by motorists as well as their impact on the average horizontal illuminance and lighting uniformity ratio in the work area. Based on the findings from these tests, a number of practical recommendations were provided to control and reduce veiling luminance ratio/glare in and around nighttime work zones. The final (fourth) task of this study focused on the development of a practical model to measure and quantify veiling luminance ratio (glare) experienced by drive-by motorists in lanes adjacent to nighttime work zones. The model was designed to consider the practical factors that were identified during the site visits, including the need to provide a robust balance between practicality and accuracy to ensure that it can be efficiently and effectively used by resident engineers on nighttime highway construction sites. To ensure practicality, the model enables resident engineers to measure the required vertical illuminance data in safe locations inside the work zone while allowing the traffic in adjacent lanes to flow uninterrupted. These measurements can then be analyzed by newly developed regression models to accurately calculate the vertical illuminance values experienced by drivers from which the veiling luminance ratio (glare) can be derived. This task also analyzed existing recommendations on the maximum allowable levels of veiling luminance ratio (glare) that can be tolerated by nighttime drivers from various lighting sources, including roadway lighting, headlights of opposite traffic vehicles, and lighting equipment in nighttime work zones. The main research development of this study contribute to the advancement of current practice in highway construction and can lead to an increase in the safety of construction workers and the traveling public in and around the nighttime work zones. The outcome of this study will help in: (1) identifying practical factors and challenges that affect the measurements of glare in and around nighttime work zones; (2) evaluating and comparing the lighting performance and glare levels of typical construction lighting equipment that are commonly used in nighttime highway construction projects; (3) recommending practical lighting arrangements that generate acceptable levels of lighting glare for motorists and adequate levels of lighting performance for construction workers inside the work zone; (4) developing practical and safe model for measuring and quantifying the veiling luminance ratio experienced by drive-by motorists near nighttime highway construction sites; and (5) providing a baseline for Departments of Transportation (DOTs) to develop specifications and standards on how to control and quantify the levels of glare in nighttime highway construction projects.

Nighttime Construction

Nighttime Construction PDF Author:
Publisher:
ISBN:
Category : Night work
Languages : en
Pages : 0

Get Book Here

Book Description
This report presents the findings of a research project that studied the veiling luminance ratio (glare) experienced by driveby motorists in lanes adjacent to nighttime work zones. The objectives of the project are to (1) provide an in-depth comprehensive review of the latest literature on the causes of glare and the existing practices that can be used to quantify and control glare during nighttime highway construction; (2) identify practical factors that affect the measurement of glare in and around nighttime work zones; (3) analyze and compare the levels of glare and lighting performance generated by typical lighting arrangements in nighttime highway construction; (4) evaluate the impact of lighting parameters on glare and provide practical recommendations to reduce and control lighting glare in and around nighttime work zones; (5) develop a practical model to measure and quantify levels of glare experienced by drive-by motorists; and (6) investigate and analyze existing studies and recommendations on the maximum allowable levels of glare that can be tolerated by nighttime drivers. The research work was performed in four main tasks: literature review, site visits, field studies, and model development.

A Guidebook for Nighttime Construction

A Guidebook for Nighttime Construction PDF Author: Jennifer Sue Shane
Publisher: Transportation Research Board
ISBN: 0309258472
Category : Technology & Engineering
Languages : en
Pages : 132

Get Book Here

Book Description
"TRB's National Cooperative Highway Research Program (NCHRP) Report 726: A Guidebook for Nighttime Construction: Impacts on Safety, Quality, and Productivity provides suggested guidance on the conduct of nighttime highway construction and maintenance operations. These guidelines are based on best practices and strategies for nighttime operations that relate to the personnel and traveling public safety and the quality of the as-built facility. The guide also addresses work-zone risk analysis planning and implementation, construction nuisances to both neighbors and workers, and work-zone illumination methods."--Publisher's description.

Nighttime Highway Construction Illumination

Nighttime Highway Construction Illumination PDF Author: John D. Bullough
Publisher:
ISBN:
Category : Night work
Languages : en
Pages : 79

Get Book Here

Book Description
The nighttime driving environment, consisting of roadway illumination, signs, vehicle lighting and markers, delineators and flashing lights, can be complex or even confusing for both pedestrians and drivers. The nighttime construction environment is even more complex and even chaotic because of the added presence of workers, construction equipment and bright lights (which are sometimes flashing). Work zones at night often involve changing conditions and new traffic patterns that are unfamiliar to drivers. Workers in highway construction areas and drivers navigating through these areas have distinct visual requirements that must be met both through lighting and other forms of visual information provided in the work zone. Conventional methods for illuminating work zones are prone to producing glare for workers and for drivers. At the same time, new technologies for lighting and traffic control, such as balloon lights, light emitting diodes (LEDs), highly reflective retroreflective sheeting and intelligent warning lights are being developed that could address many of the concerns associated with nighttime highway construction. As part of a multi-phase project, requirements for worker and driver visibility and visual information were identified through human factors research, and various technologies and new approaches to work zone lighting and traffic control were demonstrated and evaluated to provide preliminary guidance for when they might be of benefit. A checklist of planning and design issues, and a method for estimating visual performance under nighttime work zone lighting are provided to help transportation engineers and highway contractors identify promising solutions for work zone lighting.

Conlight: Lighting Design Model for Nighttime Highway Construction

Conlight: Lighting Design Model for Nighttime Highway Construction PDF Author: Khaled A. El-Rayes
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
The utilization of nighttime work in highway construction and rehabilitation projects has been increasing in recent years throughout the United States. In this type of projects, construction planners are required to develop and submit a lighting plan that provides: (1) adequate illuminance levels for all planned nighttime construction tasks; (2) reasonable uniformity of light distribution in the work area, and (3) acceptable glare levels to both road users and construction workers. In order to support construction planners in this vital and challenging task, this paper presents a lighting design model, named CONLIGHT, which is capable of considering the specific requirements of nighttime highway construction operations. The model is developed to enable construction planners to evaluate the performance of various lighting plans and select a practical design that complies with all lighting requirements for the nighttime work being planned. An application example is analyzed to illustrate the use of the model and demonstrate its accuracy and capabilities in generating practical lighting plans for nighttime construction and rehabilitation projects.

Illumination Guidelines for Nighttime Highway Work

Illumination Guidelines for Nighttime Highway Work PDF Author: Ralph D. Ellis (Ph.D.)
Publisher: Transportation Research Board
ISBN: 0309087805
Category : Automobile driving at night
Languages : en
Pages : 83

Get Book Here

Book Description


Nighttime Construction

Nighttime Construction PDF Author: University of Illinois at Urbana-Champaign. Department of Civil and Environmental Engineering
Publisher:
ISBN:
Category : Night work
Languages : en
Pages : 266

Get Book Here

Book Description


Civil Engineering Studies

Civil Engineering Studies PDF Author:
Publisher:
ISBN:
Category : Transportation engineering
Languages : en
Pages : 210

Get Book Here

Book Description


Mitigation of Nighttime Construction Noise, Vibrations, and Other Nuisances

Mitigation of Nighttime Construction Noise, Vibrations, and Other Nuisances PDF Author: Cliff J. Schexnayder
Publisher: Transportation Research Board
ISBN: 9780309068550
Category : Best management practices (Pollution prevention)
Languages : en
Pages : 108

Get Book Here

Book Description
This synthesis report describes current practice in mitigating nighttime construction nuisances such as noise, vibration, light, and dust. Roadway construction work is increasingly done at night to mediate traffic congestion; however, this trend also increases the potential for disturbing adjacent property owners. This report will be of interest to department of transportation (DOT) construction, design, and project engineers, and to those responsible for community relations. This report of the Transportation Research Board stresses the importance of informing project neighbors and establishing cooperative relations with the community as a first measure of successful mitigation. Examples show how project design can address construction nuisances by locating and sequencing construction operations to minimize their impact. Current practices used in source control, path control, and receptor control are described and documented in examples from the Boston Central Artery/Tunnel project and projects in Arizona and Salt Lake City, Utah. Appended materials provide sample specifications for mitigation of noise and dust control.

Evaluation of Steady Burn Lights for Traffic Control in Highway Work Zones, Phase II

Evaluation of Steady Burn Lights for Traffic Control in Highway Work Zones, Phase II PDF Author: Prahlad D. Pant
Publisher:
ISBN:
Category : Reflectors (Safety devices)
Languages : en
Pages : 82

Get Book Here

Book Description