Author: Mahmood Aliofkhazraei
Publisher: BoD – Books on Demand
ISBN: 9535139177
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
To protect metals or alloys from corrosion, some methods can be used such as isolating the structure from the aggressive media or compensating the loss of electrons from the corroded structure. The use of corrosion inhibitors may include organic and inorganic compounds that adsorb on the metallic structure to isolate it from its surrounding media to decrease oxidation-reduction processes. This book collects new developments about corrosion inhibitors and their recent applications.
Corrosion Inhibitors, Principles and Recent Applications
Author: Mahmood Aliofkhazraei
Publisher: BoD – Books on Demand
ISBN: 9535139177
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
To protect metals or alloys from corrosion, some methods can be used such as isolating the structure from the aggressive media or compensating the loss of electrons from the corroded structure. The use of corrosion inhibitors may include organic and inorganic compounds that adsorb on the metallic structure to isolate it from its surrounding media to decrease oxidation-reduction processes. This book collects new developments about corrosion inhibitors and their recent applications.
Publisher: BoD – Books on Demand
ISBN: 9535139177
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
To protect metals or alloys from corrosion, some methods can be used such as isolating the structure from the aggressive media or compensating the loss of electrons from the corroded structure. The use of corrosion inhibitors may include organic and inorganic compounds that adsorb on the metallic structure to isolate it from its surrounding media to decrease oxidation-reduction processes. This book collects new developments about corrosion inhibitors and their recent applications.
Corrosion Inhibitors for Steel in Concrete
Author: Bernhard Elsener
Publisher: CRC Press
ISBN:
Category : Business & Economics
Languages : en
Pages : 84
Book Description
The use of inhibitors for rehabilitation of reinforced concrete structures is a new field of application and this new volume provides a State of the Art Report on this subject. Corrosion of steel in concrete is one of the major problems for infrastructure such as bridges, tunnels, housing etc. since it leads to spalling of the concrete and loss in cross section of the steel that may cause structural and safety problems. The steel in concrete generally resists corrosion as a result of a passive layer that develops on the metal surface in the alkaline environment of the concrete. Corrosion can occur if these conditions are disturbed, for example, in the presence of chlorides or with carbonation of concrete. Traditional repair methods consist in removing the deteriorated concrete and replacing it but these can be laborious, noisy and very costly. To avoid these disadvantages new methods have been developed in recent years. These include electrochemical procedures and, increasingly, the use of inhibitors. The use of inhibitors for rehabilitation of reinforced concrete structures is a new field of application and this new volume provides a State of the Art Report on this subject.The report, under the editorship of Prof. Bernhard Elsener, was prepared by a Task Group of the EFC Working Party on Corrosion of Reinforcement in Concrete. In a literature review it describes inorganic and organic chemicals that have been proposed and examined as well as the commercial corrosion inhibitors that are available on the market. Protection mechanism and possible effects of inhibitors on concrete properties are described. Practical experience with inhibitors for steel in concrete and the long term effectiveness are considered. The various test methods for evaluating the behaviour of the inhibitors are described and critically assessed. In a rapidly evolving field this State of the Art Report, based mainly on independent not commercial literature, will be of value to corrosion engineers and civil engineers concerned with maintenance and repair of reinforced concrete structures.
Publisher: CRC Press
ISBN:
Category : Business & Economics
Languages : en
Pages : 84
Book Description
The use of inhibitors for rehabilitation of reinforced concrete structures is a new field of application and this new volume provides a State of the Art Report on this subject. Corrosion of steel in concrete is one of the major problems for infrastructure such as bridges, tunnels, housing etc. since it leads to spalling of the concrete and loss in cross section of the steel that may cause structural and safety problems. The steel in concrete generally resists corrosion as a result of a passive layer that develops on the metal surface in the alkaline environment of the concrete. Corrosion can occur if these conditions are disturbed, for example, in the presence of chlorides or with carbonation of concrete. Traditional repair methods consist in removing the deteriorated concrete and replacing it but these can be laborious, noisy and very costly. To avoid these disadvantages new methods have been developed in recent years. These include electrochemical procedures and, increasingly, the use of inhibitors. The use of inhibitors for rehabilitation of reinforced concrete structures is a new field of application and this new volume provides a State of the Art Report on this subject.The report, under the editorship of Prof. Bernhard Elsener, was prepared by a Task Group of the EFC Working Party on Corrosion of Reinforcement in Concrete. In a literature review it describes inorganic and organic chemicals that have been proposed and examined as well as the commercial corrosion inhibitors that are available on the market. Protection mechanism and possible effects of inhibitors on concrete properties are described. Practical experience with inhibitors for steel in concrete and the long term effectiveness are considered. The various test methods for evaluating the behaviour of the inhibitors are described and critically assessed. In a rapidly evolving field this State of the Art Report, based mainly on independent not commercial literature, will be of value to corrosion engineers and civil engineers concerned with maintenance and repair of reinforced concrete structures.
Sustainable Construction and Building Materials
Author: Bibhuti Bhusan Das
Publisher: Springer
ISBN: 9811333173
Category : Technology & Engineering
Languages : en
Pages : 883
Book Description
This book presents select proceedings of the International Conference on Sustainable Construction and Building Materials (ICSCBM 2018), and examines a range of durable, energy-efficient, and next-generation construction and building materials produced from industrial wastes and byproducts. The topics covered include alternative, eco-friendly construction and building materials, next-generation concretes, energy efficiency in construction, and sustainability in construction project management. The book also discusses various properties and performance attributes of modern-age concretes including their durability, workability, and carbon footprint. As such, it offers a valuable reference for beginners, researchers, and professionals interested in sustainable construction and allied fields.
Publisher: Springer
ISBN: 9811333173
Category : Technology & Engineering
Languages : en
Pages : 883
Book Description
This book presents select proceedings of the International Conference on Sustainable Construction and Building Materials (ICSCBM 2018), and examines a range of durable, energy-efficient, and next-generation construction and building materials produced from industrial wastes and byproducts. The topics covered include alternative, eco-friendly construction and building materials, next-generation concretes, energy efficiency in construction, and sustainability in construction project management. The book also discusses various properties and performance attributes of modern-age concretes including their durability, workability, and carbon footprint. As such, it offers a valuable reference for beginners, researchers, and professionals interested in sustainable construction and allied fields.
Performance Evaluation of Corrosion Inhibitors and Galvanized Steel in Concrete Exposure Specimens
Author: Jerzy Zemajtis
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 80
Book Description
Corrosion inhibitor admixtures (CIA) and galvanized reinforcing steel (GS) are used for the corrosion protection for reinforced concrete bridges. The results of a 3.5-year evaluation of exposure specimens containing CIA from three different manufacturers and GS are presented. The specimens were built to simulate four exposure conditions typical for concrete bridges located in the coastal region or inland where deicing salts are used. The exposure conditions were Horizontal, Vertical, Tidal, and Immersed Zones. The specimens were kept inside the laboratory and were exposed to weekly ponding cycles of 6% sodium chloride solution by weight. The methods used to assess the condition of the specimens included chloride concentration measurements, corrosion potentials, and corrosion rates. Additionally, visual observations were performed for identification of rust stains and cracking on concrete surfaces. The results of chloride testing indicate that the amount of chlorides present at the bar level is more than sufficient to initiate corrosion. Chloride and rapid permeability data indicate no significant difference either in a rate of chloride ingress or in the diffusion coefficients for concretes with and without CIA. Corrosion potentials were the most negative for the Bare Steel (BS) specimen prepared with the Armatec 2000 corrosion inhibitor and generally indicated a 90% probability of active corrosion. Corrosion potentials were similar for the two BS control specimens and the BS specimen prepared with Rheocrete 222 and generally indicated an uncertain probability of corrosion. Corrosion potentials were the least negative for the BS specimen prepared with DCI-S corrosion inhibitor and generally indicated a 90% probability of no corrosion. Rate of corrosion measurements were the highest for the BS control specimens and the one prepared with A2000 and the most recent data suggest corrosion damage in 2 to 10 years. Although early rate of corrosion measurements were higher or about the same as for BS control specimens, recent measurements were slightly lower for the specimen prepared with Rheocrete 222 and suggest corrosion damage in 10 to 15 years. Rate of corrosion measurements were consistently the lowest for the BS specimens prepared with DCI-S and indicate corrosion damage is expected in 10 to 15 years. The corrosion potential and rate of corrosion data indicate that DCI-S is the only CIA evaluated that clearly provides some level of corrosion protection. A direct comparison of the GS specimens to the BS specimens is not possible because the measured potential refers to the zinc oxide and not to the steel. Nevertheless, the potential data agree with the chloride and permeability data, as well as with the visual observations, and indicate the damaging effect of a high concentration of chloride ions on the GS. At low and moderate chloride exposures, however, GS does provide corrosion protection. Recommendations are to continue monitoring until sufficient cracking has occurred in all specimens to provide for making a better estimate of the service lives of CIA and GS used in the construction of concrete bridge components in Virginia. The specimens with CIA and one control (continuous reinforcement in the legs) should be taken to the Hampton Road North Tunnel Island and placed in the brackish water to a depth of the Immersed Zone at low tide for further exposure to chloride. The specimens with GS and the other control (non-continuous reinforcement in the legs) should remain in an outdoor exposure in Southwest Virginia like the Civil Engineering Materials Research Laboratory in Blacksburg, Virginia.
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 80
Book Description
Corrosion inhibitor admixtures (CIA) and galvanized reinforcing steel (GS) are used for the corrosion protection for reinforced concrete bridges. The results of a 3.5-year evaluation of exposure specimens containing CIA from three different manufacturers and GS are presented. The specimens were built to simulate four exposure conditions typical for concrete bridges located in the coastal region or inland where deicing salts are used. The exposure conditions were Horizontal, Vertical, Tidal, and Immersed Zones. The specimens were kept inside the laboratory and were exposed to weekly ponding cycles of 6% sodium chloride solution by weight. The methods used to assess the condition of the specimens included chloride concentration measurements, corrosion potentials, and corrosion rates. Additionally, visual observations were performed for identification of rust stains and cracking on concrete surfaces. The results of chloride testing indicate that the amount of chlorides present at the bar level is more than sufficient to initiate corrosion. Chloride and rapid permeability data indicate no significant difference either in a rate of chloride ingress or in the diffusion coefficients for concretes with and without CIA. Corrosion potentials were the most negative for the Bare Steel (BS) specimen prepared with the Armatec 2000 corrosion inhibitor and generally indicated a 90% probability of active corrosion. Corrosion potentials were similar for the two BS control specimens and the BS specimen prepared with Rheocrete 222 and generally indicated an uncertain probability of corrosion. Corrosion potentials were the least negative for the BS specimen prepared with DCI-S corrosion inhibitor and generally indicated a 90% probability of no corrosion. Rate of corrosion measurements were the highest for the BS control specimens and the one prepared with A2000 and the most recent data suggest corrosion damage in 2 to 10 years. Although early rate of corrosion measurements were higher or about the same as for BS control specimens, recent measurements were slightly lower for the specimen prepared with Rheocrete 222 and suggest corrosion damage in 10 to 15 years. Rate of corrosion measurements were consistently the lowest for the BS specimens prepared with DCI-S and indicate corrosion damage is expected in 10 to 15 years. The corrosion potential and rate of corrosion data indicate that DCI-S is the only CIA evaluated that clearly provides some level of corrosion protection. A direct comparison of the GS specimens to the BS specimens is not possible because the measured potential refers to the zinc oxide and not to the steel. Nevertheless, the potential data agree with the chloride and permeability data, as well as with the visual observations, and indicate the damaging effect of a high concentration of chloride ions on the GS. At low and moderate chloride exposures, however, GS does provide corrosion protection. Recommendations are to continue monitoring until sufficient cracking has occurred in all specimens to provide for making a better estimate of the service lives of CIA and GS used in the construction of concrete bridge components in Virginia. The specimens with CIA and one control (continuous reinforcement in the legs) should be taken to the Hampton Road North Tunnel Island and placed in the brackish water to a depth of the Immersed Zone at low tide for further exposure to chloride. The specimens with GS and the other control (non-continuous reinforcement in the legs) should remain in an outdoor exposure in Southwest Virginia like the Civil Engineering Materials Research Laboratory in Blacksburg, Virginia.
Evaluation of Select Methods of Corrosion Control, Corrosion Prevention, and Repair in Reinforced Concrete Bridges
Author: Habib Tabatabai
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 376
Book Description
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 376
Book Description
Corrosion of Steel in Concrete Structures
Author: Amir Poursaee
Publisher: Woodhead Publishing
ISBN: 0323851320
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Essential reading for researchers, practitioners, and engineers, this book covers not only all the important aspects in the field of corrosion of steel reinforced concrete but also discusses new topics and future trends. Theoretical concepts of corrosion of steel in concrete structures, the variety of reinforcing materials and concrete, including stainless steel and galvanized steel, measurements and evaluations, such as electrochemical techniques and acoustic emission, protection and maintenance methods, and modelling, latest developments, and future trends in the field are discussed. - Comprehensive coverage of the corrosion of steel bars in concrete, investigating the range of reinforcing materials, and types of concrete - Introduces the latest measuring methods, data collection, and advanced modeling techniques - Second edition covers a range of new, emerging topics such as the concept of chloride threshold value, concrete permeability and chloride diffusion, the role of steel microstructure, and innovations in corrosion detection devices
Publisher: Woodhead Publishing
ISBN: 0323851320
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Essential reading for researchers, practitioners, and engineers, this book covers not only all the important aspects in the field of corrosion of steel reinforced concrete but also discusses new topics and future trends. Theoretical concepts of corrosion of steel in concrete structures, the variety of reinforcing materials and concrete, including stainless steel and galvanized steel, measurements and evaluations, such as electrochemical techniques and acoustic emission, protection and maintenance methods, and modelling, latest developments, and future trends in the field are discussed. - Comprehensive coverage of the corrosion of steel bars in concrete, investigating the range of reinforcing materials, and types of concrete - Introduces the latest measuring methods, data collection, and advanced modeling techniques - Second edition covers a range of new, emerging topics such as the concept of chloride threshold value, concrete permeability and chloride diffusion, the role of steel microstructure, and innovations in corrosion detection devices
Corrosion in Reinforced Concrete Structures
Author: H Böhni
Publisher: Elsevier
ISBN: 1845690435
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
Reinforced concrete has the potential to be very durable and capable of withstanding a variety of adverse environmental conditions. However, failures in the structures do still occur as a result of premature reinforcement corrosion. In this authoritative book the fundamental aspects of this complex process are analysed; focusing on corrosion of the reinforcing steel, and looking particularly, at new scientific and technological developments.Monitoring techniques, including the newly developed online-monitoring, are examined, as well as the numerical methods used to simulate corrosion and perform parameter studies. The influence of composition and microstructure of concrete on corrosion behaviour is explored. The second half of the book, which deals with corrosion prevention methods, starts with a discussion on stainless steels as reinforcement materials. There are comprehensive reviews of the use of surface treatments and coatings, of the application of corrosion inhibitors and of the application of electrochemical techniques. In each case the necessary scientific fundamentals are explained and practical instances of use are looked at. This is an invaluable guide for engineers, materials scientists and researchers in the field of structural concrete. - Fundamental aspects of corrosion in concrete are analysed in detail - Explores how to minimise the effects of corrosion in concrete - Invaluable guide for engineers, materials scientists and researchers in the field of structural concrete
Publisher: Elsevier
ISBN: 1845690435
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
Reinforced concrete has the potential to be very durable and capable of withstanding a variety of adverse environmental conditions. However, failures in the structures do still occur as a result of premature reinforcement corrosion. In this authoritative book the fundamental aspects of this complex process are analysed; focusing on corrosion of the reinforcing steel, and looking particularly, at new scientific and technological developments.Monitoring techniques, including the newly developed online-monitoring, are examined, as well as the numerical methods used to simulate corrosion and perform parameter studies. The influence of composition and microstructure of concrete on corrosion behaviour is explored. The second half of the book, which deals with corrosion prevention methods, starts with a discussion on stainless steels as reinforcement materials. There are comprehensive reviews of the use of surface treatments and coatings, of the application of corrosion inhibitors and of the application of electrochemical techniques. In each case the necessary scientific fundamentals are explained and practical instances of use are looked at. This is an invaluable guide for engineers, materials scientists and researchers in the field of structural concrete. - Fundamental aspects of corrosion in concrete are analysed in detail - Explores how to minimise the effects of corrosion in concrete - Invaluable guide for engineers, materials scientists and researchers in the field of structural concrete
Evaluation of Corrosion Protection Methods for Reinforced Concrete Highway Structures
Author: Jennifer L. Kepler
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 244
Book Description
Since the 1970s, research projects and field studies have been conducted on different methods for protecting reinforced concrete bridges from corrosion damage. The methods include alternative reinforcement and slab design, barrier methods, electrochemical methods, and corrosion inhibitors. Each method and its underlying principles are described, performance results of laboratory and/or field trials are reviewed, and systems are evaluated based on the results of the trials. Using performance results from the studies and costs obtained from transportation agencies, an economic analysis is used to estimate the cost of each system over a 75-year economic life using discount rates of 2%, 4% and 6%.
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 244
Book Description
Since the 1970s, research projects and field studies have been conducted on different methods for protecting reinforced concrete bridges from corrosion damage. The methods include alternative reinforcement and slab design, barrier methods, electrochemical methods, and corrosion inhibitors. Each method and its underlying principles are described, performance results of laboratory and/or field trials are reviewed, and systems are evaluated based on the results of the trials. Using performance results from the studies and costs obtained from transportation agencies, an economic analysis is used to estimate the cost of each system over a 75-year economic life using discount rates of 2%, 4% and 6%.
Corrosion of Steel in Concrete
Author: Luca Bertolini
Publisher: John Wiley & Sons
ISBN: 3527651713
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.
Publisher: John Wiley & Sons
ISBN: 3527651713
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.
Assessment and Rehabilitation Strategies/guidelines to Maximize the Service Life of Concrete Structures
Author: Teresa M. Adams
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 76
Book Description
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 76
Book Description