Evaluation and Selection of an Efficient Fuel/Air Initiation Strategy for Pulse Detonation Engines

Evaluation and Selection of an Efficient Fuel/Air Initiation Strategy for Pulse Detonation Engines PDF Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 55

Get Book Here

Book Description
Rapid and efficient initiation of hydrocarbon/air mixtures has been identified as one of the critical and enabling technologies for Pulse Detonation Engines (PDEs). Although the NPS Rocket Propulsion Laboratory has successfully demonstrated fuel/air detonations in a valveless pulse detonation engine using ethylene, propane, and JP-10 fuels, past engine designs have relied upon a sensitive fuel/oxygen initiator unit. To realize the increased thermodynamic efficiencies of PDEs and thus compete with ramjets and other supersonic platforms, it is imperative to eliminate any need for supplementary oxygen in an air-breathing PDE design. This thesis examined ignition technologies and initiator designs which did not require auxiliary oxygen, including capacitive discharge systems and the developing technology of Transient Plasma Ignition (TPI). The current NPS pulse detonation engine architecture was modified to evaluate the various ignition strategies in a PDE operating on an ethylene/air mixture at simulated supersonic cruising conditions. Comparisons were based upon ignition success rate, ignition delay time, detonation wave speed, and Deflagration-to-Detonation (DDT) distance. Reliability and performance of the TPI system proved to be superior to conventional ignition systems. Furthermore, successful initiation of a PDE operating at a frequency of up to 40 hertz was demonstrated without the use of supplementary oxygen.

Evaluation and Selection of an Efficient Fuel/Air Initiation Strategy for Pulse Detonation Engines

Evaluation and Selection of an Efficient Fuel/Air Initiation Strategy for Pulse Detonation Engines PDF Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 55

Get Book Here

Book Description
Rapid and efficient initiation of hydrocarbon/air mixtures has been identified as one of the critical and enabling technologies for Pulse Detonation Engines (PDEs). Although the NPS Rocket Propulsion Laboratory has successfully demonstrated fuel/air detonations in a valveless pulse detonation engine using ethylene, propane, and JP-10 fuels, past engine designs have relied upon a sensitive fuel/oxygen initiator unit. To realize the increased thermodynamic efficiencies of PDEs and thus compete with ramjets and other supersonic platforms, it is imperative to eliminate any need for supplementary oxygen in an air-breathing PDE design. This thesis examined ignition technologies and initiator designs which did not require auxiliary oxygen, including capacitive discharge systems and the developing technology of Transient Plasma Ignition (TPI). The current NPS pulse detonation engine architecture was modified to evaluate the various ignition strategies in a PDE operating on an ethylene/air mixture at simulated supersonic cruising conditions. Comparisons were based upon ignition success rate, ignition delay time, detonation wave speed, and Deflagration-to-Detonation (DDT) distance. Reliability and performance of the TPI system proved to be superior to conventional ignition systems. Furthermore, successful initiation of a PDE operating at a frequency of up to 40 hertz was demonstrated without the use of supplementary oxygen.

Detonation Control for Propulsion

Detonation Control for Propulsion PDF Author: Jiun-Ming Li
Publisher: Springer
ISBN: 3319689061
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.

Detonation Initiation Studies and Performance Results for Pulsed Detonation Engine Applications

Detonation Initiation Studies and Performance Results for Pulsed Detonation Engine Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
An in-house computational and experimental program to investigate and develop an air breathing pulse detonation engine (PDE) that uses a practical fuel (kerosene based, fleet-wide use, JP type) is currently underway at the Combustion Sciences Branch of the Turbine Engine Division of the Air Force Research Laboratory (AFRL/PRTS). PDE's have the potential of high thrust, low weight, low cost, high scalability, and wide operating range, but several technological hurdles must be overcome before a practical engine can be designed. This research effort involves investigating such critical issues as: detonation initiation and propagation; valving, timing and control; instrumentation and diagnostics; purging, heat transfer, and repetition rate; noise and multi-tube effects; detonation and deflagration to detonation transition modeling; and performance prediction and analysis. An innovative, four-detonation-tube engine design is currently in test and evaluation. Preliminary data are obtained with premixed hydrogen/air as the fuel/oxidizer to demonstrate proof of concept and verify models. Techniques for initiating detonations in hydrogen/air mixtures are developed without the use of oxygen enriched air. An overview of the AFRL/PRTS PDE development research program and hydrogen/air results are presented.

Development of a Gas-Fed Pulse Detonation Research Engine

Development of a Gas-Fed Pulse Detonation Research Engine PDF Author: R. J. Litchford
Publisher:
ISBN:
Category : Detonation waves
Languages : en
Pages : 52

Get Book Here

Book Description


Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power PDF Author: R. J. Litchford
Publisher:
ISBN:
Category :
Languages : en
Pages : 60

Get Book Here

Book Description


Fuel Injection Strategy for a Next Generation Pulse Detonation Engine

Fuel Injection Strategy for a Next Generation Pulse Detonation Engine PDF Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 63

Get Book Here

Book Description
The Pulse Detonation Engine offers the Department of Defense a new low cost, light weight, and efficient solution to supersonic flight on many of its small airborne platforms. In the past, both liquid fuel and gaseous fuel designs have been partially developed and tested. Several aspects of these configurations have led to the need for the development of a new design, in particular the reduction of total pressure losses, and the removal of auxiliary oxygen system previously required to initiate a detonation wave in fuel-air mixtures within practical distances. Furthermore, higher repetition rates are required for practical thrust levels, as well as the use of liquid fuels, as these are more attractive due to their higher energy densities. A new PDE configuration was designed to operate on the liquid fuel, JP-10. The fuel injection system was characterized using laser diagnostics so that the fuel injection strategy could be optimized for the specified operating conditions. The timing parameters for the fuel-air injection profile were characterized as well in order to deliver the desired amount and duration. This was a concurrent effort with computational simulations of the internal flow paths, design/integration of a novel transient plasma ignition system, and ongoing developments of a performance measurement test rig.

Detonation Initiation in a Pulse Detonation Engine with Elevated Initial Pressures

Detonation Initiation in a Pulse Detonation Engine with Elevated Initial Pressures PDF Author: Andrew George Naples
Publisher:
ISBN:
Category : Engines
Languages : en
Pages : 155

Get Book Here

Book Description
Abstract: An experimental study was done to examine the effects of elevated initial tube pressure in the PDE. Measured parameters were the ignition time, DDT run-up distance, DDT times, and C-J velocity. Mixed with air, three fuels, i.e., aviation gasoline, ethylene, and hydrogen, were tested at various initial pressures and equivalence ratios. A stock automotive ignition system was employed, along with a transient and thermal plasma ignition system, to quantify the benefits of each. Measured results show a reduction in the ignition time of roughly 50% and in the DDT distance of roughly 30%, for all three fuels at an initial tube pressure of 3 atmospheres. At roughly 2 atmospheres of initial pressure the thermal plasma ignition system showed no benefit over the stock automotive ignition system. In addition to the experimental results, a brief Chemkin analysis was done to model the stock automotive ignition system.

A Performance Map for Ideal Air Breathing Pulse Detonation Engines

A Performance Map for Ideal Air Breathing Pulse Detonation Engines PDF Author: Daniel E. Paxson
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description


Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines

Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721584437
Category :
Languages : en
Pages : 32

Get Book Here

Book Description
The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed. Paxson, Daniel E. Glenn Research Center NASA/TM-2003-212496, AIAA Paper 2003-4512, NAS 1.15:212496, E-14057

Development of a Gas-Fed Pulse Detonation Research Engine

Development of a Gas-Fed Pulse Detonation Research Engine PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781720477723
Category :
Languages : en
Pages : 46

Get Book Here

Book Description
In response to the growing need for empirical data on pulse detonation engine performance and operation, NASA Marshall Space Flight Center has developed and placed into operation a low-cost gas-fed pulse detonation research engine. The guiding design strategy was to achieve a simple and flexible research apparatus, which was inexpensive to build and operate. As such, the engine was designed to operate as a heat sink device, and testing was limited to burst-mode operation with run durations of a few seconds. Wherever possible, maximum use was made of standard off-the-shelf industrial or automotive components. The 5-cm diameter primary tube is about 90-cm long and has been outfitted with a multitude of sensor and optical ports. The primary tube is fed by a coaxial injector through an initiator tube, which is inserted directly into the injector head face. Four auxiliary coaxial injectors are also integrated into the injector head assembly. All propellant flow is controlled with industrial solenoid valves. An automotive electronic ignition system was adapted for use, and spark plugs are mounted in both tubes so that a variety of ignition schemes can be examined. A microprocessor-based fiber-optic engine control system was developed to provide precise control over valve and ignition timing. Initial shakedown testing with hydrogen/oxygen mixtures verified the need for Schelkin spirals in both the initiator and primary tubes to ensure rapid development of the detonation wave. Measured pressure wave time-of-flight indicated detonation velocities of 2.4 km/sec and 2.2 km/sec in the initiator and primary tubes, respectively. These values implied a fuel-lean mixture corresponding to an H2 volume fraction near 0.5. The axial distribution for the detonation velocity was found to be essentially constant along the primary tube. Time-resolved thrust profiles were also acquired for both underfilled and overfilled tube conditions. These profiles are consistent with previous time-reso