Ethics and Data Science

Ethics and Data Science PDF Author: Mike Loukides
Publisher: "O'Reilly Media, Inc."
ISBN: 1492078212
Category : Computers
Languages : en
Pages : 37

Get Book Here

Book Description
As the impact of data science continues to grow on society there is an increased need to discuss how data is appropriately used and how to address misuse. Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day. To help you consider all of possible ramifications of your work on data projects, this report includes: A sample checklist that you can adapt for your own procedures Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences Suggestions for building ethics into your data-driven culture Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.

Ethics and Data Science

Ethics and Data Science PDF Author: Mike Loukides
Publisher: "O'Reilly Media, Inc."
ISBN: 1492078212
Category : Computers
Languages : en
Pages : 37

Get Book Here

Book Description
As the impact of data science continues to grow on society there is an increased need to discuss how data is appropriately used and how to address misuse. Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day. To help you consider all of possible ramifications of your work on data projects, this report includes: A sample checklist that you can adapt for your own procedures Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences Suggestions for building ethics into your data-driven culture Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.

97 Things About Ethics Everyone in Data Science Should Know

97 Things About Ethics Everyone in Data Science Should Know PDF Author: Bill Franks
Publisher: O'Reilly Media
ISBN: 149207263X
Category : Computers
Languages : en
Pages : 347

Get Book Here

Book Description
Most of the high-profile cases of real or perceived unethical activity in data science arenâ??t matters of bad intent. Rather, they occur because the ethics simply arenâ??t thought through well enough. Being ethical takes constant diligence, and in many situations identifying the right choice can be difficult. In this in-depth book, contributors from top companies in technology, finance, and other industries share experiences and lessons learned from collecting, managing, and analyzing data ethically. Data science professionals, managers, and tech leaders will gain a better understanding of ethics through powerful, real-world best practices. Articles include: Ethics Is Not a Binary Conceptâ??Tim Wilson How to Approach Ethical Transparencyâ??Rado Kotorov Unbiased ≠ Fairâ??Doug Hague Rules and Rationalityâ??Christof Wolf Brenner The Truth About AI Biasâ??Cassie Kozyrkov Cautionary Ethics Talesâ??Sherrill Hayes Fairness in the Age of Algorithmsâ??Anna Jacobson The Ethical Data Storytellerâ??Brent Dykes Introducing Ethicizeâ?¢, the Fully AI-Driven Cloud-Based Ethics Solution!â??Brian Oâ??Neill Be Careful with "Decisions of the Heart"â??Hugh Watson Understanding Passive Versus Proactive Ethicsâ??Bill Schmarzo

Data Science Ethics

Data Science Ethics PDF Author: David Martens
Publisher: Oxford University Press
ISBN: 0192847260
Category : MATHEMATICS
Languages : en
Pages : 273

Get Book Here

Book Description
Data science ethics is all about what is right and wrong when conducting data science. Data science has so far been primarily used for positive outcomes for businesses and society. However, just as with any technology, data science has also come with some negative consequences: an increase of privacy invasion, data-driven discrimination against sensitive groups, and decision making by complex models without explanations. While data scientists and business managers are not inherently unethical, they are not trained to weigh the ethical considerations that come from their work - Data Science Ethics addresses this increasingly significant gap and highlights different concepts and techniques that aid understanding, ranging from k-anonymity and differential privacy to homomorphic encryption and zero-knowledge proofs to address privacy concerns, techniques to remove discrimination against sensitive groups, and various explainable AI techniques. Real-life cautionary tales further illustrate the importance and potential impact of data science ethics, including tales of racist bots, search censoring, government backdoors, and face recognition. The book is punctuated with structured exercises that provide hypothetical scenarios and ethical dilemmas for reflection that teach readers how to balance the ethical concerns and the utility of data.

Responsible Data Science

Responsible Data Science PDF Author: Grant Fleming
Publisher: John Wiley & Sons
ISBN: 1119741777
Category : Computers
Languages : en
Pages : 304

Get Book Here

Book Description
Explore the most serious prevalent ethical issues in data science with this insightful new resource The increasing popularity of data science has resulted in numerous well-publicized cases of bias, injustice, and discrimination. The widespread deployment of “Black box” algorithms that are difficult or impossible to understand and explain, even for their developers, is a primary source of these unanticipated harms, making modern techniques and methods for manipulating large data sets seem sinister, even dangerous. When put in the hands of authoritarian governments, these algorithms have enabled suppression of political dissent and persecution of minorities. To prevent these harms, data scientists everywhere must come to understand how the algorithms that they build and deploy may harm certain groups or be unfair. Responsible Data Science delivers a comprehensive, practical treatment of how to implement data science solutions in an even-handed and ethical manner that minimizes the risk of undue harm to vulnerable members of society. Both data science practitioners and managers of analytics teams will learn how to: Improve model transparency, even for black box models Diagnose bias and unfairness within models using multiple metrics Audit projects to ensure fairness and minimize the possibility of unintended harm Perfect for data science practitioners, Responsible Data Science will also earn a spot on the bookshelves of technically inclined managers, software developers, and statisticians.

Data Science for Undergraduates

Data Science for Undergraduates PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309475597
Category : Education
Languages : en
Pages : 139

Get Book Here

Book Description
Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.

Leveraging Data Science for Global Health

Leveraging Data Science for Global Health PDF Author: Leo Anthony Celi
Publisher: Springer Nature
ISBN: 3030479943
Category : Medical
Languages : en
Pages : 471

Get Book Here

Book Description
This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.

Ethical Data Mining Applications for Socio-Economic Development

Ethical Data Mining Applications for Socio-Economic Development PDF Author: Hakikur Rahman
Publisher: IGI Global
ISBN: 1466640790
Category : Computers
Languages : en
Pages : 360

Get Book Here

Book Description
"This book provides an overview of data mining techniques under an ethical lens, investigating developments in research best practices and examining experimental cases to identify potential ethical dilemmas in the information and communications technology sector"--Provided by publisher.

The Ethical Algorithm

The Ethical Algorithm PDF Author: Michael Kearns
Publisher:
ISBN: 0190948205
Category : Business & Economics
Languages : en
Pages : 229

Get Book Here

Book Description
Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.

Data Science

Data Science PDF Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262535432
Category : Computers
Languages : en
Pages : 282

Get Book Here

Book Description
A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

The Ethics of Biomedical Big Data

The Ethics of Biomedical Big Data PDF Author: Brent Daniel Mittelstadt
Publisher: Springer
ISBN: 3319335251
Category : Philosophy
Languages : en
Pages : 478

Get Book Here

Book Description
This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understanding of the ethical conundrums posed by biomedical Big Data, and shows how practitioners and policy-makers can address these issues going forward.