Author: University of Wisconsin--Madison. Department of Statistics
Publisher:
ISBN:
Category :
Languages : en
Pages : 476
Book Description
Technical Report
Author: University of Wisconsin--Madison. Department of Statistics
Publisher:
ISBN:
Category :
Languages : en
Pages : 476
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 476
Book Description
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 674
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 674
Book Description
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV)
Author: Seon Ki Park
Publisher: Springer Nature
ISBN: 3030777227
Category : Science
Languages : en
Pages : 707
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including adaptive observations, sensitivity analysis, parameter estimation and AI applications. The book is useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Publisher: Springer Nature
ISBN: 3030777227
Category : Science
Languages : en
Pages : 707
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including adaptive observations, sensitivity analysis, parameter estimation and AI applications. The book is useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 312
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 312
Book Description
Variational Analysis
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747
Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747
Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Data Assimilation for the Geosciences
Author: Steven J. Fletcher
Publisher: Elsevier
ISBN: 0323972535
Category : Science
Languages : en
Pages : 1130
Book Description
Data Assimilation for the Geosciences: From Theory to Application, Second Edition brings together all of the mathematical and statistical background knowledge needed to formulate data assimilation systems into one place. It includes practical exercises enabling readers to apply theory in both a theoretical formulation as well as teach them how to code the theory with toy problems to verify their understanding. It also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to land surface, the atmosphere, ocean and other geophysical situations. The second edition of Data Assimilation for the Geosciences has been revised with up to date research that is going on in data assimilation, as well as how to apply the techniques. The new edition features an introduction of how machine learning and artificial intelligence are interfacing and aiding data assimilation. In addition to appealing to students and researchers across the geosciences, this now also appeals to new students and scientists in the field of data assimilation as it will now have even more information on the techniques, research, and applications, consolidated into one source. - Includes practical exercises and solutions enabling readers to apply theory in both a theoretical formulation as well as enabling them to code theory - Provides the mathematical and statistical background knowledge needed to formulate data assimilation systems into one place - New to this edition: covers new topics such as Observing System Experiments (OSE) and Observing System Simulation Experiments; and expanded approaches for machine learning and artificial intelligence
Publisher: Elsevier
ISBN: 0323972535
Category : Science
Languages : en
Pages : 1130
Book Description
Data Assimilation for the Geosciences: From Theory to Application, Second Edition brings together all of the mathematical and statistical background knowledge needed to formulate data assimilation systems into one place. It includes practical exercises enabling readers to apply theory in both a theoretical formulation as well as teach them how to code the theory with toy problems to verify their understanding. It also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to land surface, the atmosphere, ocean and other geophysical situations. The second edition of Data Assimilation for the Geosciences has been revised with up to date research that is going on in data assimilation, as well as how to apply the techniques. The new edition features an introduction of how machine learning and artificial intelligence are interfacing and aiding data assimilation. In addition to appealing to students and researchers across the geosciences, this now also appeals to new students and scientists in the field of data assimilation as it will now have even more information on the techniques, research, and applications, consolidated into one source. - Includes practical exercises and solutions enabling readers to apply theory in both a theoretical formulation as well as enabling them to code theory - Provides the mathematical and statistical background knowledge needed to formulate data assimilation systems into one place - New to this edition: covers new topics such as Observing System Experiments (OSE) and Observing System Simulation Experiments; and expanded approaches for machine learning and artificial intelligence
Conference on Numerical Weather Prediction
Author:
Publisher:
ISBN:
Category : Numerical weather forecasting
Languages : en
Pages : 888
Book Description
Publisher:
ISBN:
Category : Numerical weather forecasting
Languages : en
Pages : 888
Book Description
Advances in Geophysics
Author:
Publisher: Academic Press
ISBN: 0080568637
Category : Science
Languages : en
Pages : 329
Book Description
Advances in Geophysics
Publisher: Academic Press
ISBN: 0080568637
Category : Science
Languages : en
Pages : 329
Book Description
Advances in Geophysics
Monthly Weather Review
Author:
Publisher:
ISBN:
Category : Meteorology
Languages : en
Pages : 1084
Book Description
Publisher:
ISBN:
Category : Meteorology
Languages : en
Pages : 1084
Book Description
Model Calibration and Parameter Estimation
Author: Ne-Zheng Sun
Publisher: Springer
ISBN: 1493923234
Category : Mathematics
Languages : en
Pages : 638
Book Description
This three-part book provides a comprehensive and systematic introduction to these challenging topics such as model calibration, parameter estimation, reliability assessment, and data collection design. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get familiar with advanced methods for modeling complex systems. Algorithms for mathematical tools used in this book, such as numerical optimization, automatic differentiation, adaptive parameterization, hierarchical Bayesian, metamodeling, Markov chain Monte Carlo, are covered in details. This book can be used as a reference for graduate and upper level undergraduate students majoring in environmental engineering, hydrology, and geosciences. It also serves as an essential reference book for professionals such as petroleum engineers, mining engineers, chemists, mechanical engineers, biologists, biology and medical engineering, applied mathematicians, and others who perform mathematical modeling.
Publisher: Springer
ISBN: 1493923234
Category : Mathematics
Languages : en
Pages : 638
Book Description
This three-part book provides a comprehensive and systematic introduction to these challenging topics such as model calibration, parameter estimation, reliability assessment, and data collection design. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get familiar with advanced methods for modeling complex systems. Algorithms for mathematical tools used in this book, such as numerical optimization, automatic differentiation, adaptive parameterization, hierarchical Bayesian, metamodeling, Markov chain Monte Carlo, are covered in details. This book can be used as a reference for graduate and upper level undergraduate students majoring in environmental engineering, hydrology, and geosciences. It also serves as an essential reference book for professionals such as petroleum engineers, mining engineers, chemists, mechanical engineers, biologists, biology and medical engineering, applied mathematicians, and others who perform mathematical modeling.