Author: National Research Council
Publisher: National Academies Press
ISBN: 0309069882
Category : Social Science
Languages : en
Pages : 610
Book Description
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.
From Neurons to Neighborhoods
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309069882
Category : Social Science
Languages : en
Pages : 610
Book Description
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.
Publisher: National Academies Press
ISBN: 0309069882
Category : Social Science
Languages : en
Pages : 610
Book Description
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.
Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide
Author: Agency for Health Care Research and Quality (U.S.)
Publisher: Government Printing Office
ISBN: 1587634236
Category : Medical
Languages : en
Pages : 236
Book Description
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Publisher: Government Printing Office
ISBN: 1587634236
Category : Medical
Languages : en
Pages : 236
Book Description
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Handbook of Statistical Modeling for the Social and Behavioral Sciences
Author: G. Arminger
Publisher: Springer Science & Business Media
ISBN: 1489912924
Category : Psychology
Languages : en
Pages : 603
Book Description
Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.
Publisher: Springer Science & Business Media
ISBN: 1489912924
Category : Psychology
Languages : en
Pages : 603
Book Description
Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.
The Estimation of Causal Effects by Difference-in-difference Methods
Author: Michael Lechner
Publisher: Foundations and Trends(r) in E
ISBN: 9781601984982
Category : Business & Economics
Languages : en
Pages : 72
Book Description
This monograph presents a brief overview of the literature on the difference-in-difference estimation strategy and discusses major issues mainly using a treatment effect perspective that allows more general considerations than the classical regression formulation that still dominates the applied work.
Publisher: Foundations and Trends(r) in E
ISBN: 9781601984982
Category : Business & Economics
Languages : en
Pages : 72
Book Description
This monograph presents a brief overview of the literature on the difference-in-difference estimation strategy and discusses major issues mainly using a treatment effect perspective that allows more general considerations than the classical regression formulation that still dominates the applied work.
Commercial Motor Vehicle Driver Fatigue, Long-Term Health, and Highway Safety
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309392527
Category : Transportation
Languages : en
Pages : 273
Book Description
There are approximately 4,000 fatalities in crashes involving trucks and buses in the United States each year. Though estimates are wide-ranging, possibly 10 to 20 percent of these crashes might have involved fatigued drivers. The stresses associated with their particular jobs (irregular schedules, etc.) and the lifestyle that many truck and bus drivers lead, puts them at substantial risk for insufficient sleep and for developing short- and long-term health problems. Commercial Motor Vehicle Driver Fatigue, Long-Term Health and Highway Safety assesses the state of knowledge about the relationship of such factors as hours of driving, hours on duty, and periods of rest to the fatigue experienced by truck and bus drivers while driving and the implications for the safe operation of their vehicles. This report evaluates the relationship of these factors to drivers' health over the longer term, and identifies improvements in data and research methods that can lead to better understanding in both areas.
Publisher: National Academies Press
ISBN: 0309392527
Category : Transportation
Languages : en
Pages : 273
Book Description
There are approximately 4,000 fatalities in crashes involving trucks and buses in the United States each year. Though estimates are wide-ranging, possibly 10 to 20 percent of these crashes might have involved fatigued drivers. The stresses associated with their particular jobs (irregular schedules, etc.) and the lifestyle that many truck and bus drivers lead, puts them at substantial risk for insufficient sleep and for developing short- and long-term health problems. Commercial Motor Vehicle Driver Fatigue, Long-Term Health and Highway Safety assesses the state of knowledge about the relationship of such factors as hours of driving, hours on duty, and periods of rest to the fatigue experienced by truck and bus drivers while driving and the implications for the safe operation of their vehicles. This report evaluates the relationship of these factors to drivers' health over the longer term, and identifies improvements in data and research methods that can lead to better understanding in both areas.
The Effect
Author: Nick Huntington-Klein
Publisher: CRC Press
ISBN: 1000509141
Category : Business & Economics
Languages : en
Pages : 646
Book Description
Extensive code examples in R, Stata, and Python Chapters on overlooked topics in econometrics classes: heterogeneous treatment effects, simulation and power analysis, new cutting-edge methods, and uncomfortable ignored assumptions An easy-to-read conversational tone Up-to-date coverage of methods with fast-moving literatures like difference-in-differences
Publisher: CRC Press
ISBN: 1000509141
Category : Business & Economics
Languages : en
Pages : 646
Book Description
Extensive code examples in R, Stata, and Python Chapters on overlooked topics in econometrics classes: heterogeneous treatment effects, simulation and power analysis, new cutting-edge methods, and uncomfortable ignored assumptions An easy-to-read conversational tone Up-to-date coverage of methods with fast-moving literatures like difference-in-differences
Matched Sampling for Causal Effects
Author: Donald B. Rubin
Publisher: Cambridge University Press
ISBN: 1139458507
Category : Mathematics
Languages : en
Pages : 5
Book Description
Matched sampling is often used to help assess the causal effect of some exposure or intervention, typically when randomized experiments are not available or cannot be conducted. This book presents a selection of Donald B. Rubin's research articles on matched sampling, from the early 1970s, when the author was one of the major researchers involved in establishing the field, to recent contributions to this now extremely active area. The articles include fundamental theoretical studies that have become classics, important extensions, and real applications that range from breast cancer treatments to tobacco litigation to studies of criminal tendencies. They are organized into seven parts, each with an introduction by the author that provides historical and personal context and discusses the relevance of the work today. A concluding essay offers advice to investigators designing observational studies. The book provides an accessible introduction to the study of matched sampling and will be an indispensable reference for students and researchers.
Publisher: Cambridge University Press
ISBN: 1139458507
Category : Mathematics
Languages : en
Pages : 5
Book Description
Matched sampling is often used to help assess the causal effect of some exposure or intervention, typically when randomized experiments are not available or cannot be conducted. This book presents a selection of Donald B. Rubin's research articles on matched sampling, from the early 1970s, when the author was one of the major researchers involved in establishing the field, to recent contributions to this now extremely active area. The articles include fundamental theoretical studies that have become classics, important extensions, and real applications that range from breast cancer treatments to tobacco litigation to studies of criminal tendencies. They are organized into seven parts, each with an introduction by the author that provides historical and personal context and discusses the relevance of the work today. A concluding essay offers advice to investigators designing observational studies. The book provides an accessible introduction to the study of matched sampling and will be an indispensable reference for students and researchers.
Data Analysis Using Regression and Multilevel/Hierarchical Models
Author: Andrew Gelman
Publisher: Cambridge University Press
ISBN: 9780521686891
Category : Mathematics
Languages : en
Pages : 654
Book Description
This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Publisher: Cambridge University Press
ISBN: 9780521686891
Category : Mathematics
Languages : en
Pages : 654
Book Description
This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Bootstrapping
Author: Christopher Z. Mooney
Publisher: SAGE
ISBN: 9780803953819
Category : Philosophy
Languages : en
Pages : 84
Book Description
"This book is. . . clear and well-written. . . anyone with any interest in the basis of quantitative analysis simply must read this book. . . . well-written, with a wealth of explanation. . ." --Dougal Hutchison in Educational Research Using real data examples, this volume shows how to apply bootstrapping when the underlying sampling distribution of a statistic cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, it discusses the advantages and limitations of four bootstrap confidence interval methods--normal approximation, percentile, bias-corrected percentile, and percentile-t. The book concludes with a convenient summary of how to apply this computer-intensive methodology using various available software packages.
Publisher: SAGE
ISBN: 9780803953819
Category : Philosophy
Languages : en
Pages : 84
Book Description
"This book is. . . clear and well-written. . . anyone with any interest in the basis of quantitative analysis simply must read this book. . . . well-written, with a wealth of explanation. . ." --Dougal Hutchison in Educational Research Using real data examples, this volume shows how to apply bootstrapping when the underlying sampling distribution of a statistic cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, it discusses the advantages and limitations of four bootstrap confidence interval methods--normal approximation, percentile, bias-corrected percentile, and percentile-t. The book concludes with a convenient summary of how to apply this computer-intensive methodology using various available software packages.
Elements of Causal Inference
Author: Jonas Peters
Publisher: MIT Press
ISBN: 0262037319
Category : Computers
Languages : en
Pages : 289
Book Description
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Publisher: MIT Press
ISBN: 0262037319
Category : Computers
Languages : en
Pages : 289
Book Description
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.