Essential Partial Differential Equations

Essential Partial Differential Equations PDF Author: David F. Griffiths
Publisher: Springer
ISBN: 3319225693
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.

Essential Partial Differential Equations

Essential Partial Differential Equations PDF Author: David F. Griffiths
Publisher: Springer
ISBN: 3319225693
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.

Introduction to Partial Differential Equations with Applications

Introduction to Partial Differential Equations with Applications PDF Author: E. C. Zachmanoglou
Publisher: Courier Corporation
ISBN: 048613217X
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations PDF Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 3319020994
Category : Mathematics
Languages : en
Pages : 636

Get Book Here

Book Description
This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Partial Differential Equations in Mechanics 1

Partial Differential Equations in Mechanics 1 PDF Author: A.P.S. Selvadurai
Publisher: Springer Science & Business Media
ISBN: 9783540672838
Category : Mathematics
Languages : en
Pages : 632

Get Book Here

Book Description
This two-volume work focuses on partial differential equations (PDEs) with important applications in mechanical and civil engineering, emphasizing mathematical correctness, analysis, and verification of solutions. The presentation involves a discussion of relevant PDE applications, its derivation, and the formulation of consistent boundary conditions.

Differential Equations for Engineers

Differential Equations for Engineers PDF Author: David V. Kalbaugh
Publisher: CRC Press
ISBN: 1498798829
Category : Mathematics
Languages : en
Pages : 453

Get Book Here

Book Description
This book surveys the broad landscape of differential equations, including elements of partial differential equations (PDEs), and concisely presents the topics of most use to engineers. It introduces each topic with a motivating application drawn from electrical, mechanical, and aerospace engineering. The text has reviews of foundations, step-by-step explanations, and sets of solved problems. It fosters students’ abilities in the art of approximation and self-checking. The book addresses PDEs with and without boundary conditions, which demonstrates strong similarities with ordinary differential equations and clear illustrations of the nature of solutions. Furthermore, each chapter includes word problems and challenge problems. Several extended computing projects run throughout the text.

Partial Differential Equations

Partial Differential Equations PDF Author: Lawrence C. Evans
Publisher: American Mathematical Society
ISBN: 1470469421
Category : Mathematics
Languages : en
Pages : 662

Get Book Here

Book Description
This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. … Evans' book is evidence of his mastering of the field and the clarity of presentation. —Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations … Every graduate student in analysis should read it. —David Jerison, MIT I usePartial Differential Equationsto prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's … I am very happy with the preparation it provides my students. —Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge … An outstanding reference for many aspects of the field. —Rafe Mazzeo, Stanford University

Partial Differential Equations

Partial Differential Equations PDF Author: Avner Friedman
Publisher: Courier Corporation
ISBN: 0486469190
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
Largely self-contained, this three-part treatment focuses on elliptic and evolution equations, concluding with a series of independent topics directly related to the methods and results of the preceding sections. 1969 edition.

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations PDF Author: David Borthwick
Publisher: Springer
ISBN: 3319489364
Category : Mathematics
Languages : en
Pages : 293

Get Book Here

Book Description
This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise. Within each section the author creates a narrative that answers the five questions: What is the scientific problem we are trying to understand? How do we model that with PDE? What techniques can we use to analyze the PDE? How do those techniques apply to this equation? What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations PDF Author: Michael Renardy
Publisher: Springer Science & Business Media
ISBN: 0387216871
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.

Principles of Partial Differential Equations

Principles of Partial Differential Equations PDF Author: Alexander Komech
Publisher: Springer Science & Business Media
ISBN: 1441910956
Category : Mathematics
Languages : en
Pages : 165

Get Book Here

Book Description
This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.