Author: John H. Lowenstein
Publisher: Cambridge University Press
ISBN: 1107005205
Category : Mathematics
Languages : en
Pages : 203
Book Description
Concise and pedagogical textbook that covers all the topics necessary for a graduate-level course in dynamics based on Hamiltonian methods.
Essentials of Hamiltonian Dynamics
Author: John H. Lowenstein
Publisher: Cambridge University Press
ISBN: 1107005205
Category : Mathematics
Languages : en
Pages : 203
Book Description
Concise and pedagogical textbook that covers all the topics necessary for a graduate-level course in dynamics based on Hamiltonian methods.
Publisher: Cambridge University Press
ISBN: 1107005205
Category : Mathematics
Languages : en
Pages : 203
Book Description
Concise and pedagogical textbook that covers all the topics necessary for a graduate-level course in dynamics based on Hamiltonian methods.
Simulating Hamiltonian Dynamics
Author: Benedict Leimkuhler
Publisher: Cambridge University Press
ISBN: 9780521772907
Category : Mathematics
Languages : en
Pages : 464
Book Description
Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.
Publisher: Cambridge University Press
ISBN: 9780521772907
Category : Mathematics
Languages : en
Pages : 464
Book Description
Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.
Classical and Quantum Dynamics of Constrained Hamiltonian Systems
Author: Heinz J. Rothe
Publisher: World Scientific
ISBN: 9814299642
Category : Science
Languages : en
Pages : 317
Book Description
This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field?antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.
Publisher: World Scientific
ISBN: 9814299642
Category : Science
Languages : en
Pages : 317
Book Description
This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field?antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.
Symplectic Invariants and Hamiltonian Dynamics
Author: Helmut Hofer
Publisher: Birkhäuser
ISBN: 3034885407
Category : Mathematics
Languages : en
Pages : 356
Book Description
Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.
Publisher: Birkhäuser
ISBN: 3034885407
Category : Mathematics
Languages : en
Pages : 356
Book Description
Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.
Variational Principles in Dynamics and Quantum Theory
Author: Wolfgang Yourgrau
Publisher: Courier Corporation
ISBN: 0486151131
Category : Science
Languages : en
Pages : 222
Book Description
DIVHistorical, theoretical survey with many insights, much hard-to-find material. Hamilton’s principle, Hamilton-Jacobi equation, etc. /div
Publisher: Courier Corporation
ISBN: 0486151131
Category : Science
Languages : en
Pages : 222
Book Description
DIVHistorical, theoretical survey with many insights, much hard-to-find material. Hamilton’s principle, Hamilton-Jacobi equation, etc. /div
Classical Mechanics
Author: Walter Greiner
Publisher: Springer Science & Business Media
ISBN: 3642034349
Category : Science
Languages : en
Pages : 574
Book Description
The series of texts on Classical Theoretical Physics is based on the highly successful courses given by Walter Greiner. The volumes provide a complete survey of classical theoretical physics and an enormous number of worked out examples and problems.
Publisher: Springer Science & Business Media
ISBN: 3642034349
Category : Science
Languages : en
Pages : 574
Book Description
The series of texts on Classical Theoretical Physics is based on the highly successful courses given by Walter Greiner. The volumes provide a complete survey of classical theoretical physics and an enormous number of worked out examples and problems.
Mathematical Methods of Classical Mechanics
Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Introduction to Analytical Dynamics
Author: Nicholas Woodhouse
Publisher: Springer Science & Business Media
ISBN: 1848828160
Category : Science
Languages : en
Pages : 240
Book Description
First published in 1987, this text offers concise but clear explanations and derivations to give readers a confident grasp of the chain of argument that leads from Newton’s laws through Lagrange’s equations and Hamilton’s principle, to Hamilton’s equations and canonical transformations. This new edition has been extensively revised and updated to include: A chapter on symplectic geometry and the geometric interpretation of some of the coordinate calculations. A more systematic treatment of the conections with the phase-plane analysis of ODEs; and an improved treatment of Euler angles. A greater emphasis on the links to special relativity and quantum theory showing how ideas from this classical subject link into contemporary areas of mathematics and theoretical physics. A wealth of examples show the subject in action and a range of exercises – with solutions – are provided to help test understanding.
Publisher: Springer Science & Business Media
ISBN: 1848828160
Category : Science
Languages : en
Pages : 240
Book Description
First published in 1987, this text offers concise but clear explanations and derivations to give readers a confident grasp of the chain of argument that leads from Newton’s laws through Lagrange’s equations and Hamilton’s principle, to Hamilton’s equations and canonical transformations. This new edition has been extensively revised and updated to include: A chapter on symplectic geometry and the geometric interpretation of some of the coordinate calculations. A more systematic treatment of the conections with the phase-plane analysis of ODEs; and an improved treatment of Euler angles. A greater emphasis on the links to special relativity and quantum theory showing how ideas from this classical subject link into contemporary areas of mathematics and theoretical physics. A wealth of examples show the subject in action and a range of exercises – with solutions – are provided to help test understanding.
Classical Mechanics
Author: R. Douglas Gregory
Publisher: Cambridge University Press
ISBN: 1139450042
Category : Science
Languages : en
Pages : 14
Book Description
Gregory's Classical Mechanics is a major new textbook for undergraduates in mathematics and physics. It is a thorough, self-contained and highly readable account of a subject many students find difficult. The author's clear and systematic style promotes a good understanding of the subject: each concept is motivated and illustrated by worked examples, while problem sets provide plenty of practice for understanding and technique. Computer assisted problems, some suitable for projects, are also included. The book is structured to make learning the subject easy; there is a natural progression from core topics to more advanced ones and hard topics are treated with particular care. A theme of the book is the importance of conservation principles. These appear first in vectorial mechanics where they are proved and applied to problem solving. They reappear in analytical mechanics, where they are shown to be related to symmetries of the Lagrangian, culminating in Noether's theorem.
Publisher: Cambridge University Press
ISBN: 1139450042
Category : Science
Languages : en
Pages : 14
Book Description
Gregory's Classical Mechanics is a major new textbook for undergraduates in mathematics and physics. It is a thorough, self-contained and highly readable account of a subject many students find difficult. The author's clear and systematic style promotes a good understanding of the subject: each concept is motivated and illustrated by worked examples, while problem sets provide plenty of practice for understanding and technique. Computer assisted problems, some suitable for projects, are also included. The book is structured to make learning the subject easy; there is a natural progression from core topics to more advanced ones and hard topics are treated with particular care. A theme of the book is the importance of conservation principles. These appear first in vectorial mechanics where they are proved and applied to problem solving. They reappear in analytical mechanics, where they are shown to be related to symmetries of the Lagrangian, culminating in Noether's theorem.
Classical Dynamics
Author: Jorge V. José
Publisher: Cambridge University Press
ISBN: 9780521636360
Category : Science
Languages : en
Pages : 702
Book Description
A comprehensive graduate-level textbook on classical dynamics with many worked examples and over 200 homework exercises, first published in 1998.
Publisher: Cambridge University Press
ISBN: 9780521636360
Category : Science
Languages : en
Pages : 702
Book Description
A comprehensive graduate-level textbook on classical dynamics with many worked examples and over 200 homework exercises, first published in 1998.