Linear Network Error Correction Coding

Linear Network Error Correction Coding PDF Author: Xuan Guang
Publisher: Springer Science & Business Media
ISBN: 1493905880
Category : Computers
Languages : en
Pages : 110

Get Book Here

Book Description
There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences similar to algebraic coding, and also briefly discuss the main results following the other approach, that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances and weights are defined in order to characterize the discrepancy of these two vectors and to measure the seriousness of errors. Similar to classical error-correcting codes, the authors also apply the minimum distance decoding principle to LNEC codes at each sink node, but use distinct distances. For this decoding principle, it is shown that the minimum distance of a LNEC code at each sink node can fully characterize its error-detecting, error-correcting and erasure-error-correcting capabilities with respect to the sink node. In addition, some important and useful coding bounds in classical coding theory are generalized to linear network error correction coding, including the Hamming bound, the Gilbert-Varshamov bound and the Singleton bound. Several constructive algorithms of LNEC codes are presented, particularly for LNEC MDS codes, along with an analysis of their performance. Random linear network error correction coding is feasible for noncoherent networks with errors. Its performance is investigated by estimating upper bounds on some failure probabilities by analyzing the information transmission and error correction. Finally, the basic theory of subspace codes is introduced including the encoding and decoding principle as well as the channel model, the bounds on subspace codes, code construction and decoding algorithms.

Linear Network Error Correction Coding

Linear Network Error Correction Coding PDF Author: Xuan Guang
Publisher: Springer Science & Business Media
ISBN: 1493905880
Category : Computers
Languages : en
Pages : 110

Get Book Here

Book Description
There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences similar to algebraic coding, and also briefly discuss the main results following the other approach, that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances and weights are defined in order to characterize the discrepancy of these two vectors and to measure the seriousness of errors. Similar to classical error-correcting codes, the authors also apply the minimum distance decoding principle to LNEC codes at each sink node, but use distinct distances. For this decoding principle, it is shown that the minimum distance of a LNEC code at each sink node can fully characterize its error-detecting, error-correcting and erasure-error-correcting capabilities with respect to the sink node. In addition, some important and useful coding bounds in classical coding theory are generalized to linear network error correction coding, including the Hamming bound, the Gilbert-Varshamov bound and the Singleton bound. Several constructive algorithms of LNEC codes are presented, particularly for LNEC MDS codes, along with an analysis of their performance. Random linear network error correction coding is feasible for noncoherent networks with errors. Its performance is investigated by estimating upper bounds on some failure probabilities by analyzing the information transmission and error correction. Finally, the basic theory of subspace codes is introduced including the encoding and decoding principle as well as the channel model, the bounds on subspace codes, code construction and decoding algorithms.

Network Coding for Error Correction

Network Coding for Error Correction PDF Author: Svitlana S. Vyetrenko
Publisher:
ISBN:
Category : Computer network protocols
Languages : en
Pages : 276

Get Book Here

Book Description
In this thesis, network error correction is considered from both theoretical and practical viewpoints. Theoretical parameters such as network structure and type of connection (multicast vs. nonmulticast) have a profound effect on network error correction capability. This work is also dictated by the practical network issues that arise in wireless ad-hoc networks, networks with limited computational power (e.g., sensor networks) and real-time data streaming systems (e.g., video/audio conferencing or media streaming). Firstly, multicast network scenarios with probabilistic error and erasure occurrence are considered. In particular, it is shown that in networks with both random packet erasures and errors, increasing the relative occurrence of erasures compared to errors favors network coding over forwarding at network nodes, and vice versa. Also, fountain-like error-correcting codes, for which redundancy is incrementally added until decoding succeeds, are constructed. These codes are appropriate for use in scenarios where the upper bound on the number of errors is unknown a priori. Secondly, network error correction in multisource multicast and nonmulticast network scenarios is discussed. Capacity regions for multisource multicast network error correction with both known and unknown topologies (coherent and noncoherent network coding) are derived. Several approaches to lower- and upper-bounding error-correction capacity regions of general nonmulticast networks are given. For 3-layer two-sink and nested-demand nonmulticast network topologies some of the given lower and upper bounds match. For these network topologies, code constructions that employ only intrasession coding are designed. These designs can be applied to streaming erasure correction code constructions.

Error Correction Coding

Error Correction Coding PDF Author: Todd K. Moon
Publisher: John Wiley & Sons
ISBN: 0471648000
Category : Computers
Languages : en
Pages : 800

Get Book Here

Book Description
An unparalleled learning tool and guide to error correction coding Error correction coding techniques allow the detection and correction of errors occurring during the transmission of data in digital communication systems. These techniques are nearly universally employed in modern communication systems, and are thus an important component of the modern information economy. Error Correction Coding: Mathematical Methods and Algorithms provides a comprehensive introduction to both the theoretical and practical aspects of error correction coding, with a presentation suitable for a wide variety of audiences, including graduate students in electrical engineering, mathematics, or computer science. The pedagogy is arranged so that the mathematical concepts are presented incrementally, followed immediately by applications to coding. A large number of exercises expand and deepen students' understanding. A unique feature of the book is a set of programming laboratories, supplemented with over 250 programs and functions on an associated Web site, which provides hands-on experience and a better understanding of the material. These laboratories lead students through the implementation and evaluation of Hamming codes, CRC codes, BCH and R-S codes, convolutional codes, turbo codes, and LDPC codes. This text offers both "classical" coding theory-such as Hamming, BCH, Reed-Solomon, Reed-Muller, and convolutional codes-as well as modern codes and decoding methods, including turbo codes, LDPC codes, repeat-accumulate codes, space time codes, factor graphs, soft-decision decoding, Guruswami-Sudan decoding, EXIT charts, and iterative decoding. Theoretical complements on performance and bounds are presented. Coding is also put into its communications and information theoretic context and connections are drawn to public key cryptosystems. Ideal as a classroom resource and a professional reference, this thorough guide will benefit electrical and computer engineers, mathematicians, students, researchers, and scientists.

Error Correction in Network Coding

Error Correction in Network Coding PDF Author: Christian Andersen
Publisher:
ISBN:
Category :
Languages : en
Pages : 79

Get Book Here

Book Description


Error Correcting Coding and Security for Data Networks

Error Correcting Coding and Security for Data Networks PDF Author: Grigorii Kabatiansky
Publisher: John Wiley & Sons
ISBN: 0470867566
Category : Technology & Engineering
Languages : en
Pages : 288

Get Book Here

Book Description
Error correcting coding is often analyzed in terms of its application to the separate levels within the data network in isolation from each other. In this fresh approach, the authors consider the data network as a superchannel (a multi-layered entity) which allows error correcting coding to be evaluated as it is applied to a number of network layers as a whole. By exposing the problems of applying error correcting coding in data networks, and by discussing coding theory and its applications, this original technique shows how to correct errors in the network through joint coding at different network layers. Discusses the problem of reconciling coding applied to different layers using a superchannel approach Includes thorough coverage of all the key codes: linear block codes, Hamming, BCH and Reed-Solomon codes, LDPC codes decoding, as well as convolutional, turbo and iterative coding Considers new areas of application of error correcting codes such as transport coding, code-based cryptosystems and coding for image compression Demonstrates how to use error correcting coding to control such important data characteristics as mean message delay Provides theoretical explanations backed up by numerous real-world examples and practical recommendations Features a companion website containing additional research results including new constructions of LDPC codes, joint error-control coding and synchronization, Reed-Muller codes and their list decoding By progressing from theory through to practical problem solving, this resource contains invaluable advice for researchers, postgraduate students, engineers and computer scientists interested in data communications and applications of coding theory.

Error-Correction Coding for Digital Communications

Error-Correction Coding for Digital Communications PDF Author: George C. Clark Jr.
Publisher: Springer Science & Business Media
ISBN: 1489921745
Category : Technology & Engineering
Languages : en
Pages : 432

Get Book Here

Book Description
Error-correction coding is being used on an almost routine basis in most new communication systems. Not only is coding equipment being used to increase the energy efficiency of communication links, but coding ideas are also providing innovative solutions to many related communication problems. Among these are the elimination of intersymbol interference caused by filtering and multipath and the improved demodulation of certain frequency modulated signals by taking advantage of the "natural" coding provided by a continuous phase. Although several books and nu merous articles have been written on coding theory, there are still noticeable deficiencies. First, the practical aspects of translating a specific decoding algorithm into actual hardware have been largely ignored. The information that is available is sketchy and is widely dispersed. Second, the information required to evaluate a particular technique under situations that are en countered in practice is available for the most part only in private company reports. This book is aimed at correcting both of these problems. It is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. The book U"Ses a minimum of mathematics and entirely avoids the classical theorem/proof approach that is often seen in coding texts.

Error-Correction Coding and Decoding

Error-Correction Coding and Decoding PDF Author: Martin Tomlinson
Publisher: Springer
ISBN: 3319511033
Category : Technology & Engineering
Languages : en
Pages : 527

Get Book Here

Book Description
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.

Error-Control Coding for Data Networks

Error-Control Coding for Data Networks PDF Author: Irving S. Reed
Publisher: Springer Science & Business Media
ISBN: 146155005X
Category : Computers
Languages : en
Pages : 554

Get Book Here

Book Description
The purpose of Error-Control Coding for Data Networks is to provide an accessible and comprehensive overview of the fundamental techniques and practical applications of the error-control coding needed by students and engineers. An additional purpose of the book is to acquaint the reader with the analytical techniques used to design an error-control coding system for many new applications in data networks. Error~control coding is a field in which elegant theory was motivated by practical problems so that it often leads to important useful advances. Claude Shannon in 1948 proved the existence of error-control codes that, under suitable conditions and at rates less than channel capacity, would transmit error-free information for all practical applications. The first practical binary codes were introduced by Richard Hamming and Marcel Golay from which the drama and excitement have infused researchers and engineers in digital communication and error-control coding for more than fifty years. Nowadays, error-control codes are being used in almost all modem digital electronic systems and data networks. Not only is coding equipment being implemented to increase the energy and bandwidth efficiency of communication systems, but coding also provides innovative solutions to many related data-networking problems.

Network Coding Theory

Network Coding Theory PDF Author: Raymond W. Yeung
Publisher: Now Publishers Inc
ISBN: 1933019247
Category : Computers
Languages : en
Pages : 156

Get Book Here

Book Description
Provides a tutorial on the basics of network coding theory. Divided into two parts, this book presents a unified framework for understanding the basic notions and fundamental results in network coding. It is aimed at students, researchers and practitioners working in networking research.

Network Coding

Network Coding PDF Author: Khaldoun Al Agha
Publisher: John Wiley & Sons
ISBN: 1118563107
Category : Technology & Engineering
Languages : en
Pages : 171

Get Book Here

Book Description
Network coding, a relatively new area of research, has evolved from the theoretical level to become a tool used to optimize the performance of communication networks – wired, cellular, ad hoc, etc. The idea consists of mixing “packets” of data together when routing them from source to destination. Since network coding increases the network performance, it becomes a tool to enhance the existing protocols and algorithms in a network or for applications such as peer-to-peer and TCP. This book delivers an understanding of network coding and provides a set of studies showing the improvements in security, capacity and performance of fixed and mobile networks. This is increasingly topical as industry is increasingly becoming more reliant upon and applying network coding in multiple applications. Many cases where network coding is used in routing, physical layer, security, flooding, error correction, optimization and relaying are given – all of which are key areas of interest. Network Coding is the ideal resource for university students studying coding, and researchers and practitioners in sectors of all industries where digital communication and its application needs to be correctly understood and implemented. Contents 1. Network Coding: From Theory to Practice, Youghourta Benfattoum, Steven Martin and Khaldoun Al Agha. 2. Fountain Codes and Network Coding for WSNs, Anya Apavatjrut, Claire Goursaud, Katia Jaffrès-Runser and Jean-Marie Gorce. 3. Switched Code for Ad Hoc Networks: Optimizing the Diffusion by Using Network Coding, Nour Kadi and Khaldoun Al Agha. 4. Security by Network Coding, Katia Jaffrès-Runser and Cédric Lauradoux. 5. Security for Network Coding, Marine Minier, Yuanyuan Zhang and Wassim Znaïdi. 6. Random Network Coding and Matroids, Maximilien Gadouleau. 7. Joint Network-Channel Coding for the Semi-Orthogonal MARC: Theoretical Bounds and Practical Design, Atoosa Hatefi, Antoine O. Berthet and Raphael Visoz. 8. Robust Network Coding, Lana Iwaza, Marco Di Renzo and Michel Kieffer. 9. Flow Models and Optimization for Network Coding, Eric Gourdin and Jeremiah Edwards.