Author: Oliver Pretzel
Publisher: Oxford University Press on Demand
ISBN: 9780192690678
Category : Computers
Languages : en
Pages : 341
Book Description
This textbook is a reprint of Chapters 1-20 of the original hardback edition. It provides the reader with the tools necessary to implement modern error-processing schemes. The material on algebraic geometry and geometric Goppa codes, which is not part of a standard introductory course on coding theory, has been omitted. The book assumes only a basic knowledge of linear algebra and develops the mathematical theory in parallel with the codes. Central to the text are worked examples whichmotivate and explain the theory. The book is in four parts. The first introduces the basic ideas of coding theory. The second and third cover the theory of finite fields and give a detailed treatment of BCH and Reed-Solomon codes. These parts are linked by their uses of Eulid's algorithm as a central technique. The fourth part treats classical Goppa codes.
Error-correcting Codes and Finite Fields
Author: Oliver Pretzel
Publisher: Oxford University Press on Demand
ISBN: 9780192690678
Category : Computers
Languages : en
Pages : 341
Book Description
This textbook is a reprint of Chapters 1-20 of the original hardback edition. It provides the reader with the tools necessary to implement modern error-processing schemes. The material on algebraic geometry and geometric Goppa codes, which is not part of a standard introductory course on coding theory, has been omitted. The book assumes only a basic knowledge of linear algebra and develops the mathematical theory in parallel with the codes. Central to the text are worked examples whichmotivate and explain the theory. The book is in four parts. The first introduces the basic ideas of coding theory. The second and third cover the theory of finite fields and give a detailed treatment of BCH and Reed-Solomon codes. These parts are linked by their uses of Eulid's algorithm as a central technique. The fourth part treats classical Goppa codes.
Publisher: Oxford University Press on Demand
ISBN: 9780192690678
Category : Computers
Languages : en
Pages : 341
Book Description
This textbook is a reprint of Chapters 1-20 of the original hardback edition. It provides the reader with the tools necessary to implement modern error-processing schemes. The material on algebraic geometry and geometric Goppa codes, which is not part of a standard introductory course on coding theory, has been omitted. The book assumes only a basic knowledge of linear algebra and develops the mathematical theory in parallel with the codes. Central to the text are worked examples whichmotivate and explain the theory. The book is in four parts. The first introduces the basic ideas of coding theory. The second and third cover the theory of finite fields and give a detailed treatment of BCH and Reed-Solomon codes. These parts are linked by their uses of Eulid's algorithm as a central technique. The fourth part treats classical Goppa codes.
A Course in Algebraic Error-Correcting Codes
Author: Simeon Ball
Publisher: Springer Nature
ISBN: 3030411532
Category : Mathematics
Languages : en
Pages : 185
Book Description
This textbook provides a rigorous mathematical perspective on error-correcting codes, starting with the basics and progressing through to the state-of-the-art. Algebraic, combinatorial, and geometric approaches to coding theory are adopted with the aim of highlighting how coding can have an important real-world impact. Because it carefully balances both theory and applications, this book will be an indispensable resource for readers seeking a timely treatment of error-correcting codes. Early chapters cover fundamental concepts, introducing Shannon’s theorem, asymptotically good codes and linear codes. The book then goes on to cover other types of codes including chapters on cyclic codes, maximum distance separable codes, LDPC codes, p-adic codes, amongst others. Those undertaking independent study will appreciate the helpful exercises with selected solutions. A Course in Algebraic Error-Correcting Codes suits an interdisciplinary audience at the Masters level, including students of mathematics, engineering, physics, and computer science. Advanced undergraduates will find this a useful resource as well. An understanding of linear algebra is assumed.
Publisher: Springer Nature
ISBN: 3030411532
Category : Mathematics
Languages : en
Pages : 185
Book Description
This textbook provides a rigorous mathematical perspective on error-correcting codes, starting with the basics and progressing through to the state-of-the-art. Algebraic, combinatorial, and geometric approaches to coding theory are adopted with the aim of highlighting how coding can have an important real-world impact. Because it carefully balances both theory and applications, this book will be an indispensable resource for readers seeking a timely treatment of error-correcting codes. Early chapters cover fundamental concepts, introducing Shannon’s theorem, asymptotically good codes and linear codes. The book then goes on to cover other types of codes including chapters on cyclic codes, maximum distance separable codes, LDPC codes, p-adic codes, amongst others. Those undertaking independent study will appreciate the helpful exercises with selected solutions. A Course in Algebraic Error-Correcting Codes suits an interdisciplinary audience at the Masters level, including students of mathematics, engineering, physics, and computer science. Advanced undergraduates will find this a useful resource as well. An understanding of linear algebra is assumed.
Fundamentals of Error-Correcting Codes
Author: W. Cary Huffman
Publisher: Cambridge University Press
ISBN: 1139439502
Category : Technology & Engineering
Languages : en
Pages : 668
Book Description
Fundamentals of Error Correcting Codes is an in-depth introduction to coding theory from both an engineering and mathematical viewpoint. As well as covering classical topics, there is much coverage of techniques which could only be found in specialist journals and book publications. Numerous exercises and examples and an accessible writing style make this a lucid and effective introduction to coding theory for advanced undergraduate and graduate students, researchers and engineers, whether approaching the subject from a mathematical, engineering or computer science background.
Publisher: Cambridge University Press
ISBN: 1139439502
Category : Technology & Engineering
Languages : en
Pages : 668
Book Description
Fundamentals of Error Correcting Codes is an in-depth introduction to coding theory from both an engineering and mathematical viewpoint. As well as covering classical topics, there is much coverage of techniques which could only be found in specialist journals and book publications. Numerous exercises and examples and an accessible writing style make this a lucid and effective introduction to coding theory for advanced undergraduate and graduate students, researchers and engineers, whether approaching the subject from a mathematical, engineering or computer science background.
An Introduction to Error Correcting Codes with Applications
Author: Scott A. Vanstone
Publisher: Springer Science & Business Media
ISBN: 1475720327
Category : Technology & Engineering
Languages : en
Pages : 297
Book Description
5. 2 Rings and Ideals 148 5. 3 Ideals and Cyclic Subspaces 152 5. 4 Generator Matrices and Parity-Check Matrices 159 5. 5 Encoding Cyclic Codest 163 5. 6 Syndromes and Simple Decoding Procedures 168 5. 7 Burst Error Correcting 175 5. 8 Finite Fields and Factoring xn-l over GF(q) 181 5. 9 Another Method for Factoring xn-l over GF(q)t 187 5. 10 Exercises 193 Chapter 6 BCH Codes and Bounds for Cyclic Codes 6. 1 Introduction 201 6. 2 BCH Codes and the BCH Bound 205 6. 3 Bounds for Cyclic Codest 210 6. 4 Decoding BCH Codes 215 6. 5 Linearized Polynomials and Finding Roots of Polynomialst 224 6. 6 Exercises 231 Chapter 7 Error Correction Techniques and Digital Audio Recording 7. 1 Introduction 237 7. 2 Reed-Solomon Codes 237 7. 3 Channel Erasures 240 7. 4 BCH Decoding with Erasures 244 7. 5 Interleaving 250 7. 6 Error Correction and Digital Audio Recording 256 7.
Publisher: Springer Science & Business Media
ISBN: 1475720327
Category : Technology & Engineering
Languages : en
Pages : 297
Book Description
5. 2 Rings and Ideals 148 5. 3 Ideals and Cyclic Subspaces 152 5. 4 Generator Matrices and Parity-Check Matrices 159 5. 5 Encoding Cyclic Codest 163 5. 6 Syndromes and Simple Decoding Procedures 168 5. 7 Burst Error Correcting 175 5. 8 Finite Fields and Factoring xn-l over GF(q) 181 5. 9 Another Method for Factoring xn-l over GF(q)t 187 5. 10 Exercises 193 Chapter 6 BCH Codes and Bounds for Cyclic Codes 6. 1 Introduction 201 6. 2 BCH Codes and the BCH Bound 205 6. 3 Bounds for Cyclic Codest 210 6. 4 Decoding BCH Codes 215 6. 5 Linearized Polynomials and Finding Roots of Polynomialst 224 6. 6 Exercises 231 Chapter 7 Error Correction Techniques and Digital Audio Recording 7. 1 Introduction 237 7. 2 Reed-Solomon Codes 237 7. 3 Channel Erasures 240 7. 4 BCH Decoding with Erasures 244 7. 5 Interleaving 250 7. 6 Error Correction and Digital Audio Recording 256 7.
Error-Correcting Linear Codes
Author: Anton Betten
Publisher: Springer Science & Business Media
ISBN: 3540317031
Category : Mathematics
Languages : en
Pages : 819
Book Description
This text offers an introduction to error-correcting linear codes for researchers and graduate students in mathematics, computer science and engineering. The book differs from other standard texts in its emphasis on the classification of codes by means of isometry classes. The relevant algebraic are developed rigorously. Cyclic codes are discussed in great detail. In the last four chapters these isometry classes are enumerated, and representatives are constructed algorithmically.
Publisher: Springer Science & Business Media
ISBN: 3540317031
Category : Mathematics
Languages : en
Pages : 819
Book Description
This text offers an introduction to error-correcting linear codes for researchers and graduate students in mathematics, computer science and engineering. The book differs from other standard texts in its emphasis on the classification of codes by means of isometry classes. The relevant algebraic are developed rigorously. Cyclic codes are discussed in great detail. In the last four chapters these isometry classes are enumerated, and representatives are constructed algorithmically.
Introduction to the Theory of Error-Correcting Codes
Author: Vera Pless
Publisher: John Wiley & Sons
ISBN: 1118030990
Category : Mathematics
Languages : en
Pages : 226
Book Description
A complete introduction to the many mathematical tools used to solve practical problems in coding. Mathematicians have been fascinated with the theory of error-correcting codes since the publication of Shannon's classic papers fifty years ago. With the proliferation of communications systems, computers, and digital audio devices that employ error-correcting codes, the theory has taken on practical importance in the solution of coding problems. This solution process requires the use of a wide variety of mathematical tools and an understanding of how to find mathematical techniques to solve applied problems. Introduction to the Theory of Error-Correcting Codes, Third Edition demonstrates this process and prepares students to cope with coding problems. Like its predecessor, which was awarded a three-star rating by the Mathematical Association of America, this updated and expanded edition gives readers a firm grasp of the timeless fundamentals of coding as well as the latest theoretical advances. This new edition features: * A greater emphasis on nonlinear binary codes * An exciting new discussion on the relationship between codes and combinatorial games * Updated and expanded sections on the Vashamov-Gilbert bound, van Lint-Wilson bound, BCH codes, and Reed-Muller codes * Expanded and updated problem sets. Introduction to the Theory of Error-Correcting Codes, Third Edition is the ideal textbook for senior-undergraduate and first-year graduate courses on error-correcting codes in mathematics, computer science, and electrical engineering.
Publisher: John Wiley & Sons
ISBN: 1118030990
Category : Mathematics
Languages : en
Pages : 226
Book Description
A complete introduction to the many mathematical tools used to solve practical problems in coding. Mathematicians have been fascinated with the theory of error-correcting codes since the publication of Shannon's classic papers fifty years ago. With the proliferation of communications systems, computers, and digital audio devices that employ error-correcting codes, the theory has taken on practical importance in the solution of coding problems. This solution process requires the use of a wide variety of mathematical tools and an understanding of how to find mathematical techniques to solve applied problems. Introduction to the Theory of Error-Correcting Codes, Third Edition demonstrates this process and prepares students to cope with coding problems. Like its predecessor, which was awarded a three-star rating by the Mathematical Association of America, this updated and expanded edition gives readers a firm grasp of the timeless fundamentals of coding as well as the latest theoretical advances. This new edition features: * A greater emphasis on nonlinear binary codes * An exciting new discussion on the relationship between codes and combinatorial games * Updated and expanded sections on the Vashamov-Gilbert bound, van Lint-Wilson bound, BCH codes, and Reed-Muller codes * Expanded and updated problem sets. Introduction to the Theory of Error-Correcting Codes, Third Edition is the ideal textbook for senior-undergraduate and first-year graduate courses on error-correcting codes in mathematics, computer science, and electrical engineering.
The Theory of Error Correcting Codes
Author: Florence Jessie MacWilliams
Publisher:
ISBN:
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 762
Book Description
Publisher:
ISBN:
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 762
Book Description
Error-correcting Codes and Finite Fields
Author: Oliver Pretzel
Publisher: Oxford University Press, USA
ISBN:
Category : Computers
Languages : en
Pages : 424
Book Description
Starting with the elementary ideas of parity check codes, this work takes the reader via BCH and Reed-Solomon codes all the way to the geometric Goppa codes. The necessary mathematics is developed in parallel with the applications.
Publisher: Oxford University Press, USA
ISBN:
Category : Computers
Languages : en
Pages : 424
Book Description
Starting with the elementary ideas of parity check codes, this work takes the reader via BCH and Reed-Solomon codes all the way to the geometric Goppa codes. The necessary mathematics is developed in parallel with the applications.
Concise Encyclopedia of Coding Theory
Author: W. Cary Huffman
Publisher: CRC Press
ISBN: 1351375105
Category : Computers
Languages : en
Pages : 998
Book Description
Most coding theory experts date the origin of the subject with the 1948 publication of A Mathematical Theory of Communication by Claude Shannon. Since then, coding theory has grown into a discipline with many practical applications (antennas, networks, memories), requiring various mathematical techniques, from commutative algebra, to semi-definite programming, to algebraic geometry. Most topics covered in the Concise Encyclopedia of Coding Theory are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references. The book is divided into three parts: Part I fundamentals: cyclic codes, skew cyclic codes, quasi-cyclic codes, self-dual codes, codes and designs, codes over rings, convolutional codes, performance bounds Part II families: AG codes, group algebra codes, few-weight codes, Boolean function codes, codes over graphs Part III applications: alternative metrics, algorithmic techniques, interpolation decoding, pseudo-random sequences, lattices, quantum coding, space-time codes, network coding, distributed storage, secret-sharing, and code-based-cryptography. Features Suitable for students and researchers in a wide range of mathematical disciplines Contains many examples and references Most topics take the reader to the frontiers of research
Publisher: CRC Press
ISBN: 1351375105
Category : Computers
Languages : en
Pages : 998
Book Description
Most coding theory experts date the origin of the subject with the 1948 publication of A Mathematical Theory of Communication by Claude Shannon. Since then, coding theory has grown into a discipline with many practical applications (antennas, networks, memories), requiring various mathematical techniques, from commutative algebra, to semi-definite programming, to algebraic geometry. Most topics covered in the Concise Encyclopedia of Coding Theory are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references. The book is divided into three parts: Part I fundamentals: cyclic codes, skew cyclic codes, quasi-cyclic codes, self-dual codes, codes and designs, codes over rings, convolutional codes, performance bounds Part II families: AG codes, group algebra codes, few-weight codes, Boolean function codes, codes over graphs Part III applications: alternative metrics, algorithmic techniques, interpolation decoding, pseudo-random sequences, lattices, quantum coding, space-time codes, network coding, distributed storage, secret-sharing, and code-based-cryptography. Features Suitable for students and researchers in a wide range of mathematical disciplines Contains many examples and references Most topics take the reader to the frontiers of research
Finite Fields and Applications
Author: Gary L. Mullen
Publisher: American Mathematical Soc.
ISBN: 0821844180
Category : Computers
Languages : en
Pages : 190
Book Description
Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.
Publisher: American Mathematical Soc.
ISBN: 0821844180
Category : Computers
Languages : en
Pages : 190
Book Description
Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.