Author: Klaus Hollig
Publisher: SIAM
ISBN: 9780898717532
Category : Mathematics
Languages : en
Pages : 155
Book Description
Finite Element Methods with B-Splines describes new weighted approximation techniques, combining the computational advantages of B-splines and standard finite elements. In particular, no grid generation is necessary, which eliminates a difficult and often time-consuming preprocessing step. The meshless methods are very efficient and yield highly accurate solutions with relatively few parameters. This is illustrated for typical boundary value problems in fluid flow, heat conduction, and elasticity. Topics discussed by the author include basic finite element theory, algorithms for B-splines, weighted bases, stability and error estimates, multigrid techniques, applications, and numerical examples.
Finite Element Methods with B-splines
Author: Klaus Hollig
Publisher: SIAM
ISBN: 9780898717532
Category : Mathematics
Languages : en
Pages : 155
Book Description
Finite Element Methods with B-Splines describes new weighted approximation techniques, combining the computational advantages of B-splines and standard finite elements. In particular, no grid generation is necessary, which eliminates a difficult and often time-consuming preprocessing step. The meshless methods are very efficient and yield highly accurate solutions with relatively few parameters. This is illustrated for typical boundary value problems in fluid flow, heat conduction, and elasticity. Topics discussed by the author include basic finite element theory, algorithms for B-splines, weighted bases, stability and error estimates, multigrid techniques, applications, and numerical examples.
Publisher: SIAM
ISBN: 9780898717532
Category : Mathematics
Languages : en
Pages : 155
Book Description
Finite Element Methods with B-Splines describes new weighted approximation techniques, combining the computational advantages of B-splines and standard finite elements. In particular, no grid generation is necessary, which eliminates a difficult and often time-consuming preprocessing step. The meshless methods are very efficient and yield highly accurate solutions with relatively few parameters. This is illustrated for typical boundary value problems in fluid flow, heat conduction, and elasticity. Topics discussed by the author include basic finite element theory, algorithms for B-splines, weighted bases, stability and error estimates, multigrid techniques, applications, and numerical examples.
Finite Element Methods with B-Splines
Author: Klaus Hollig
Publisher: SIAM
ISBN: 0898716993
Category : Mathematics
Languages : en
Pages : 152
Book Description
An exploration of the new weighted approximation techniques which result from the combination of the finite element method and B-splines.
Publisher: SIAM
ISBN: 0898716993
Category : Mathematics
Languages : en
Pages : 152
Book Description
An exploration of the new weighted approximation techniques which result from the combination of the finite element method and B-splines.
The Scaled Boundary Finite Element Method
Author: Chongmin Song
Publisher: John Wiley & Sons
ISBN: 1119388457
Category : Science
Languages : en
Pages : 775
Book Description
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
Publisher: John Wiley & Sons
ISBN: 1119388457
Category : Science
Languages : en
Pages : 775
Book Description
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
Computational Fluid-Structure Interaction
Author: Yuri Bazilevs
Publisher: John Wiley & Sons
ISBN: 111848357X
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.
Publisher: John Wiley & Sons
ISBN: 111848357X
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.
Space-Time Methods
Author: Ulrich Langer
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110548488
Category : Mathematics
Languages : en
Pages : 262
Book Description
This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110548488
Category : Mathematics
Languages : en
Pages : 262
Book Description
This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.
Isogeometric Analysis and Applications 2014
Author: Bert Jüttler
Publisher: Springer
ISBN: 3319233157
Category : Mathematics
Languages : en
Pages : 301
Book Description
Isogeometric Analysis is a groundbreaking computational approach that promises the possibility of integrating the finite element method into conventional spline-based CAD design tools. It thus bridges the gap between numerical analysis and geometry, and moreover it allows to tackle new cutting edge applications at the frontiers of research in science and engineering. This proceedings volume contains a selection of outstanding research papers presented at the second International Workshop on Isogeometric Analysis and Applications, held at Annweiler, Germany, in April 2014.
Publisher: Springer
ISBN: 3319233157
Category : Mathematics
Languages : en
Pages : 301
Book Description
Isogeometric Analysis is a groundbreaking computational approach that promises the possibility of integrating the finite element method into conventional spline-based CAD design tools. It thus bridges the gap between numerical analysis and geometry, and moreover it allows to tackle new cutting edge applications at the frontiers of research in science and engineering. This proceedings volume contains a selection of outstanding research papers presented at the second International Workshop on Isogeometric Analysis and Applications, held at Annweiler, Germany, in April 2014.
Numerical Methods in Turbulence Simulation
Author: Robert Moser
Publisher: Elsevier
ISBN: 032399833X
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
Numerical Methods in Turbulence Simulation provides detailed specifications of the numerical methods needed to solve important problems in turbulence simulation. Numerical simulation of turbulent fluid flows is challenging because of the range of space and time scales that must be represented. This book provides explanations of the numerical error and stability characteristics of numerical techniques, along with treatments of the additional numerical challenges that arise in large eddy simulations. Chapters are written as tutorials by experts in the field, covering specific both contexts and applications. Three classes of turbulent flow are addressed, including incompressible, compressible and reactive, with a wide range of the best numerical practices covered. A thorough introduction to the numerical methods is provided for those without a background in turbulence, as is everything needed for a thorough understanding of the fundamental equations. The small scales that must be resolved are generally not localized around some distinct small-scale feature, but instead are distributed throughout a volume. These characteristics put particular strain on the numerical methods used to simulate turbulent flows. - Includes a detailed review of the numerical approximation issues that impact the simulation of turbulence - Provides a range of examples of large eddy simulation techniques - Discusses the challenges posed by boundary conditions in turbulence simulation and provides approaches to addressing them
Publisher: Elsevier
ISBN: 032399833X
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
Numerical Methods in Turbulence Simulation provides detailed specifications of the numerical methods needed to solve important problems in turbulence simulation. Numerical simulation of turbulent fluid flows is challenging because of the range of space and time scales that must be represented. This book provides explanations of the numerical error and stability characteristics of numerical techniques, along with treatments of the additional numerical challenges that arise in large eddy simulations. Chapters are written as tutorials by experts in the field, covering specific both contexts and applications. Three classes of turbulent flow are addressed, including incompressible, compressible and reactive, with a wide range of the best numerical practices covered. A thorough introduction to the numerical methods is provided for those without a background in turbulence, as is everything needed for a thorough understanding of the fundamental equations. The small scales that must be resolved are generally not localized around some distinct small-scale feature, but instead are distributed throughout a volume. These characteristics put particular strain on the numerical methods used to simulate turbulent flows. - Includes a detailed review of the numerical approximation issues that impact the simulation of turbulence - Provides a range of examples of large eddy simulation techniques - Discusses the challenges posed by boundary conditions in turbulence simulation and provides approaches to addressing them
Selected Papers of J. M. Burgers
Author: F.T. Nieuwstadt
Publisher: Springer Science & Business Media
ISBN: 9401101957
Category : Science
Languages : en
Pages : 761
Book Description
J.M. Burgers (1895--1981) is regarded as one of the leading scientists in the field of fluid mechanics, contributing many important results, a number of which still bear his name. However, the work of this outstanding scientist was mostly published in the Proceedings and Transactions of The Royal Netherlands Academy of Sciences, of which he was a distinguished member. Nowadays, this work is almost impossible to obtain through the usual library channels. Therefore, the editors have decided to reissue the most important work of J.M. Burgers, which gives the reader access to the original papers which led to important results, now known as the Burgers Equation, the Burgers Vector and the Burgers Vortex. Further, the book contains a biography of J.M. Burgers, which provides the reader with both information on his scientific life, as well as a rounded impression of the many activities which J.M. Burgers performed or was involved in outside his science.
Publisher: Springer Science & Business Media
ISBN: 9401101957
Category : Science
Languages : en
Pages : 761
Book Description
J.M. Burgers (1895--1981) is regarded as one of the leading scientists in the field of fluid mechanics, contributing many important results, a number of which still bear his name. However, the work of this outstanding scientist was mostly published in the Proceedings and Transactions of The Royal Netherlands Academy of Sciences, of which he was a distinguished member. Nowadays, this work is almost impossible to obtain through the usual library channels. Therefore, the editors have decided to reissue the most important work of J.M. Burgers, which gives the reader access to the original papers which led to important results, now known as the Burgers Equation, the Burgers Vector and the Burgers Vortex. Further, the book contains a biography of J.M. Burgers, which provides the reader with both information on his scientific life, as well as a rounded impression of the many activities which J.M. Burgers performed or was involved in outside his science.
Differential Quadrature and Its Application in Engineering
Author: Chang Shu
Publisher: Springer Science & Business Media
ISBN: 9781852332099
Category : Mathematics
Languages : en
Pages : 366
Book Description
In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.
Publisher: Springer Science & Business Media
ISBN: 9781852332099
Category : Mathematics
Languages : en
Pages : 366
Book Description
In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.
The NURBS Book
Author: Les Piegl
Publisher: Springer Science & Business Media
ISBN: 3642592236
Category : Computers
Languages : en
Pages : 650
Book Description
Until recently B-spline curves and surfaces (NURBS) were principally of interest to the computer aided design community, where they have become the standard for curve and surface description. Today we are seeing expanded use of NURBS in modeling objects for the visual arts, including the film and entertainment industries, art, and sculpture. NURBS are now also being used for modeling scenes for virtual reality applications. These applications are expected to increase. Consequently, it is quite appropriate for The.N'URBS Book to be part of the Monographs in Visual Communication Series. B-spline curves and surfaces have been an enduring element throughout my pro fessional life. The first edition of Mathematical Elements for Computer Graphics, published in 1972, was the first computer aided design/interactive computer graph ics textbook to contain material on B-splines. That material was obtained through the good graces of Bill Gordon and Louie Knapp while they were at Syracuse University. A paper of mine, presented during the Summer of 1977 at a Society of Naval Architects and Marine Engineers meeting on computer aided ship surface design, was arguably the first to examine the use of B-spline curves for ship design. For many, B-splines, rational B-splines, and NURBS have been a bit mysterious.
Publisher: Springer Science & Business Media
ISBN: 3642592236
Category : Computers
Languages : en
Pages : 650
Book Description
Until recently B-spline curves and surfaces (NURBS) were principally of interest to the computer aided design community, where they have become the standard for curve and surface description. Today we are seeing expanded use of NURBS in modeling objects for the visual arts, including the film and entertainment industries, art, and sculpture. NURBS are now also being used for modeling scenes for virtual reality applications. These applications are expected to increase. Consequently, it is quite appropriate for The.N'URBS Book to be part of the Monographs in Visual Communication Series. B-spline curves and surfaces have been an enduring element throughout my pro fessional life. The first edition of Mathematical Elements for Computer Graphics, published in 1972, was the first computer aided design/interactive computer graph ics textbook to contain material on B-splines. That material was obtained through the good graces of Bill Gordon and Louie Knapp while they were at Syracuse University. A paper of mine, presented during the Summer of 1977 at a Society of Naval Architects and Marine Engineers meeting on computer aided ship surface design, was arguably the first to examine the use of B-spline curves for ship design. For many, B-splines, rational B-splines, and NURBS have been a bit mysterious.