Ergodic Theory

Ergodic Theory PDF Author: Manfred Einsiedler
Publisher: Springer Science & Business Media
ISBN: 0857290215
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Ergodic Theory

Ergodic Theory PDF Author: Manfred Einsiedler
Publisher: Springer Science & Business Media
ISBN: 0857290215
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Dynamical Systems and Ergodic Theory

Dynamical Systems and Ergodic Theory PDF Author: Mark Pollicott
Publisher: Cambridge University Press
ISBN: 9780521575997
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description
This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).

An Introduction to Infinite Ergodic Theory

An Introduction to Infinite Ergodic Theory PDF Author: Jon Aaronson
Publisher: American Mathematical Soc.
ISBN: 0821804944
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
Infinite ergodic theory is the study of measure preserving transformations of infinite measure spaces. The book focuses on properties specific to infinite measure preserving transformations. The work begins with an introduction to basic nonsingular ergodic theory, including recurrence behaviour, existence of invariant measures, ergodic theorems, and spectral theory. A wide range of possible "ergodic behaviour" is catalogued in the third chapter mainly according to the yardsticks of intrinsic normalizing constants, laws of large numbers, and return sequences. The rest of the book consists of illustrations of these phenomena, including Markov maps, inner functions, and cocycles and skew products. One chapter presents a start on the classification theory.

Ergodic Theory of Random Transformations

Ergodic Theory of Random Transformations PDF Author: Yuri Kifer
Publisher: Springer Science & Business Media
ISBN: 146849175X
Category : Mathematics
Languages : en
Pages : 221

Get Book Here

Book Description
Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transforma tions chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. 'Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations.

Ergodic Theory

Ergodic Theory PDF Author: I. P. Cornfeld
Publisher: Springer Science & Business Media
ISBN: 1461569273
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
Ergodic theory is one of the few branches of mathematics which has changed radically during the last two decades. Before this period, with a small number of exceptions, ergodic theory dealt primarily with averaging problems and general qualitative questions, while now it is a powerful amalgam of methods used for the analysis of statistical properties of dyna mical systems. For this reason, the problems of ergodic theory now interest not only the mathematician, but also the research worker in physics, biology, chemistry, etc. The outline of this book became clear to us nearly ten years ago but, for various reasons, its writing demanded a long period of time. The main principle, which we adhered to from the beginning, was to develop the approaches and methods or ergodic theory in the study of numerous concrete examples. Because of this, Part I of the book contains the description of various classes of dynamical systems, and their elementary analysis on the basis of the fundamental notions of ergodicity, mixing, and spectra of dynamical systems. Here, as in many other cases, the adjective" elementary" i~ not synonymous with "simple. " Part II is devoted to "abstract ergodic theory. " It includes the construc tion of direct and skew products of dynamical systems, the Rohlin-Halmos lemma, and the theory of special representations of dynamical systems with continuous time. A considerable part deals with entropy.

Ergodic Theory and Dynamical Systems

Ergodic Theory and Dynamical Systems PDF Author: Yves Coudène
Publisher: Springer
ISBN: 1447172876
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of comments for the more advanced reader.

Ergodic Theory

Ergodic Theory PDF Author: David Kerr
Publisher: Springer
ISBN: 3319498479
Category : Mathematics
Languages : en
Pages : 455

Get Book Here

Book Description
This book provides an introduction to the ergodic theory and topological dynamics of actions of countable groups. It is organized around the theme of probabilistic and combinatorial independence, and highlights the complementary roles of the asymptotic and the perturbative in its comprehensive treatment of the core concepts of weak mixing, compactness, entropy, and amenability. The more advanced material includes Popa's cocycle superrigidity, the Furstenberg-Zimmer structure theorem, and sofic entropy. The structure of the book is designed to be flexible enough to serve a variety of readers. The discussion of dynamics is developed from scratch assuming some rudimentary functional analysis, measure theory, and topology, and parts of the text can be used as an introductory course. Researchers in ergodic theory and related areas will also find the book valuable as a reference.

Lectures on Ergodic Theory

Lectures on Ergodic Theory PDF Author: Paul R. Halmos
Publisher: Courier Dover Publications
ISBN: 0486814890
Category : Mathematics
Languages : en
Pages : 113

Get Book Here

Book Description
This concise classic by Paul R. Halmos, a well-known master of mathematical exposition, has served as a basic introduction to aspects of ergodic theory since its first publication in 1956. "The book is written in the pleasant, relaxed, and clear style usually associated with the author," noted the Bulletin of the American Mathematical Society, adding, "The material is organized very well and painlessly presented." Suitable for advanced undergraduates and graduate students in mathematics, the treatment covers recurrence, mean and pointwise convergence, ergodic theorem, measure algebras, and automorphisms of compact groups. Additional topics include weak topology and approximation, uniform topology and approximation, invariant measures, unsolved problems, and other subjects.

Ergodic Theory and Differentiable Dynamics

Ergodic Theory and Differentiable Dynamics PDF Author: Ricardo Mañé
Publisher: Springer Science & Business Media
ISBN: 9783540152781
Category : Entropia
Languages : en
Pages : 317

Get Book Here

Book Description
This version differs from the Portuguese edition only in a few additions and many minor corrections. Naturally, this edition raised the question of whether to use the opportunity to introduce major additions. In a book like this, ending in the heart of a rich research field, there are always further topics that should arguably be included. Subjects like geodesic flows or the role of Hausdorff dimension in con­ temporary ergodic theory are two of the most tempting gaps to fill. However, I let it stand with practically the same boundaries as the original version, still believing these adequately fulfill its goal of presenting the basic knowledge required to approach the research area of Differentiable Ergodic Theory. I wish to thank Dr. Levy for the excellent translation and several of the correc­ tions mentioned above. Rio de Janeiro, January 1987 Ricardo Mane Introduction This book is an introduction to ergodic theory, with emphasis on its relationship with the theory of differentiable dynamical systems, which is sometimes called differentiable ergodic theory. Chapter 0, a quick review of measure theory, is included as a reference. Proofs are omitted, except for some results on derivatives with respect to sequences of partitions, which are not generally found in standard texts on measure and integration theory and tend to be lost within a much wider framework in more advanced texts.

Ergodic Theory and Fractal Geometry

Ergodic Theory and Fractal Geometry PDF Author: Hillel Furstenberg
Publisher: American Mathematical Society
ISBN: 1470410346
Category : Mathematics
Languages : en
Pages : 82

Get Book Here

Book Description
Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.