Ergodic Theorems for Group Actions

Ergodic Theorems for Group Actions PDF Author: A.A. Tempelman
Publisher: Springer Science & Business Media
ISBN: 9401714606
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
This volume is devoted to generalizations of the classical Birkhoff and von Neuman ergodic theorems to semigroup representations in Banach spaces, semigroup actions in measure spaces, homogeneous random fields and random measures on homogeneous spaces. The ergodicity, mixing and quasimixing of semigroup actions and homogeneous random fields are considered as well. In particular homogeneous spaces, on which all homogeneous random fields are quasimixing are introduced and studied (the n-dimensional Euclidean and Lobachevsky spaces with n>=2, and all simple Lie groups with finite centre are examples of such spaces. Also dealt with are applications of general ergodic theorems for the construction of specific informational and thermodynamical characteristics of homogeneous random fields on amenable groups and for proving general versions of the McMillan, Breiman and Lee-Yang theorems. A variational principle which characterizes the Gibbsian homogeneous random fields in terms of the specific free energy is also proved. The book has eight chapters, a number of appendices and a substantial list of references. For researchers whose works involves probability theory, ergodic theory, harmonic analysis, measure theory and statistical Physics.

Ergodic Theorems for Group Actions

Ergodic Theorems for Group Actions PDF Author: A.A. Tempelman
Publisher: Springer Science & Business Media
ISBN: 9401714606
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
This volume is devoted to generalizations of the classical Birkhoff and von Neuman ergodic theorems to semigroup representations in Banach spaces, semigroup actions in measure spaces, homogeneous random fields and random measures on homogeneous spaces. The ergodicity, mixing and quasimixing of semigroup actions and homogeneous random fields are considered as well. In particular homogeneous spaces, on which all homogeneous random fields are quasimixing are introduced and studied (the n-dimensional Euclidean and Lobachevsky spaces with n>=2, and all simple Lie groups with finite centre are examples of such spaces. Also dealt with are applications of general ergodic theorems for the construction of specific informational and thermodynamical characteristics of homogeneous random fields on amenable groups and for proving general versions of the McMillan, Breiman and Lee-Yang theorems. A variational principle which characterizes the Gibbsian homogeneous random fields in terms of the specific free energy is also proved. The book has eight chapters, a number of appendices and a substantial list of references. For researchers whose works involves probability theory, ergodic theory, harmonic analysis, measure theory and statistical Physics.

Group Actions in Ergodic Theory, Geometry, and Topology

Group Actions in Ergodic Theory, Geometry, and Topology PDF Author: Robert J. Zimmer
Publisher: University of Chicago Press
ISBN: 022656827X
Category : Mathematics
Languages : en
Pages : 724

Get Book Here

Book Description
Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer’s body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer’s ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.

Global Aspects of Ergodic Group Actions

Global Aspects of Ergodic Group Actions PDF Author: A. S. Kechris
Publisher: American Mathematical Soc.
ISBN: 0821848941
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
A study of ergodic, measure preserving actions of countable discrete groups on standard probability spaces. It explores a direction that emphasizes a global point of view, concentrating on the structure of the space of measure preserving actions of a given group and its associated cocycle spaces.

Ergodic Theory and Semisimple Groups

Ergodic Theory and Semisimple Groups PDF Author: R.J. Zimmer
Publisher: Springer Science & Business Media
ISBN: 1468494880
Category : Mathematics
Languages : en
Pages : 219

Get Book Here

Book Description
This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are a number of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be dealing (concerning actions of more general groups), and hence we have assumed absolutely no knowledge of ergodic theory (not even the definition of "ergodic") on the part of the reader. All results are developed in full detail.

Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces

Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces PDF Author: M. Bachir Bekka
Publisher: Cambridge University Press
ISBN: 9780521660303
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.

Geometry, Rigidity, and Group Actions

Geometry, Rigidity, and Group Actions PDF Author: Robert J. Zimmer
Publisher: University of Chicago Press
ISBN: 0226237893
Category : Mathematics
Languages : en
Pages : 659

Get Book Here

Book Description
The study of group actions is more than 100 years old but remains a widely studied topic in a variety of mathematic fields. A central development in the last 50 years is the phenomenon of rigidity, whereby one can classify actions of certain groups. This book looks at rigidity.

Operator Theoretic Aspects of Ergodic Theory

Operator Theoretic Aspects of Ergodic Theory PDF Author: Tanja Eisner
Publisher: Springer
ISBN: 3319168983
Category : Mathematics
Languages : en
Pages : 630

Get Book Here

Book Description
Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory

Ergodic Theory via Joinings

Ergodic Theory via Joinings PDF Author: Eli Glasner
Publisher: American Mathematical Soc.
ISBN: 1470419513
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
This book introduces modern ergodic theory. It emphasizes a new approach that relies on the technique of joining two (or more) dynamical systems. This approach has proved to be fruitful in many recent works, and this is the first time that the entire theory is presented from a joining perspective. Another new feature of the book is the presentation of basic definitions of ergodic theory in terms of the Koopman unitary representation associated with a dynamical system and the invariant mean on matrix coefficients, which exists for any acting groups, amenable or not. Accordingly, the first part of the book treats the ergodic theory for an action of an arbitrary countable group. The second part, which deals with entropy theory, is confined (for the sake of simplicity) to the classical case of a single measure-preserving transformation on a Lebesgue probability space.

Convergence in Ergodic Theory and Probability

Convergence in Ergodic Theory and Probability PDF Author: Vitaly Bergelson
Publisher: Walter de Gruyter
ISBN: 3110889382
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
This series is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.

Flexibility of Group Actions on the Circle

Flexibility of Group Actions on the Circle PDF Author: Sang-hyun Kim
Publisher: Springer
ISBN: 3030028550
Category : Mathematics
Languages : en
Pages : 140

Get Book Here

Book Description
In this partly expository work, a framework is developed for building exotic circle actions of certain classical groups. The authors give general combination theorems for indiscrete isometry groups of hyperbolic space which apply to Fuchsian and limit groups. An abundance of integer-valued subadditive defect-one quasimorphisms on these groups follow as a corollary. The main classes of groups considered are limit and Fuchsian groups. Limit groups are shown to admit large collections of faithful actions on the circle with disjoint rotation spectra. For Fuchsian groups, further flexibility results are proved and the existence of non-geometric actions of free and surface groups is established. An account is given of the extant notions of semi-conjugacy, showing they are equivalent. This book is suitable for experts interested in flexibility of representations, and for non-experts wanting an introduction to group representations into circle homeomorphism groups.