Author: Joseph Bernstein
Publisher: Springer
ISBN: 3540484302
Category : Mathematics
Languages : en
Pages : 145
Book Description
The equivariant derived category of sheaves is introduced. All usual functors on sheaves are extended to the equivariant situation. Some applications to the equivariant intersection cohomology are given. The theory may be useful to specialists in representation theory, algebraic geometry or topology.
Equivariant Sheaves and Functors
Author: Joseph Bernstein
Publisher: Springer
ISBN: 3540484302
Category : Mathematics
Languages : en
Pages : 145
Book Description
The equivariant derived category of sheaves is introduced. All usual functors on sheaves are extended to the equivariant situation. Some applications to the equivariant intersection cohomology are given. The theory may be useful to specialists in representation theory, algebraic geometry or topology.
Publisher: Springer
ISBN: 3540484302
Category : Mathematics
Languages : en
Pages : 145
Book Description
The equivariant derived category of sheaves is introduced. All usual functors on sheaves are extended to the equivariant situation. Some applications to the equivariant intersection cohomology are given. The theory may be useful to specialists in representation theory, algebraic geometry or topology.
Equivariant Sheaves and Functors
Author: Joseph Bernstein
Publisher:
ISBN: 9783662161890
Category :
Languages : en
Pages : 152
Book Description
Publisher:
ISBN: 9783662161890
Category :
Languages : en
Pages : 152
Book Description
Extension Groups of Tautological Sheaves on Hilbert Schemes of Points on Surfaces
Author: Andreas Krug
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832532544
Category : Mathematics
Languages : en
Pages : 130
Book Description
In this thesis cohomological invariants of tensor products of tautological objects in the derived category of Hilbert schemes of points on surfaces are studied. The main tool is the Bridgeland-King-Reid-Haiman equivalence between the derived category of the Hilbert scheme and the equivariant derived category of the cartesian power of the surface. The work of Scala on this topic is further developed leading to a new description of the image of tensor products of tautological bundles under the BKRH equivalence. This description leads to formulas for the Euler characteristics of triple tensor products of tautological objects for arbitrary n and for arbitrary tensor products in the case n=2. Furthermore a formula for the extension groups between tautological objects is proven and the Yoneda product is described.
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832532544
Category : Mathematics
Languages : en
Pages : 130
Book Description
In this thesis cohomological invariants of tensor products of tautological objects in the derived category of Hilbert schemes of points on surfaces are studied. The main tool is the Bridgeland-King-Reid-Haiman equivalence between the derived category of the Hilbert scheme and the equivariant derived category of the cartesian power of the surface. The work of Scala on this topic is further developed leading to a new description of the image of tensor products of tautological bundles under the BKRH equivalence. This description leads to formulas for the Euler characteristics of triple tensor products of tautological objects for arbitrary n and for arbitrary tensor products in the case n=2. Furthermore a formula for the extension groups between tautological objects is proven and the Yoneda product is described.
Introductory Lectures on Equivariant Cohomology
Author: Loring W. Tu
Publisher: Princeton University Press
ISBN: 0691191751
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.
Publisher: Princeton University Press
ISBN: 0691191751
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.
Stable and Unstable Homotopy
Author: William G. Dwyer
Publisher: American Mathematical Soc.
ISBN: 9780821871263
Category : Mathematics
Languages : en
Pages : 328
Book Description
This volume presents the proceedings of workshops on stable homotopy theory and on unstable homotopy theory held at The Fields Institute as part of the homotopy program during the year 1996. The papers in the volume describe current research in the subject, and all included works were refereed. Rather than being a summary of work to be published elsewhere, each paper is the unique source for the new material it contains. The book contains current research from international experts in the subject area, and presents open problems with directions for future research.
Publisher: American Mathematical Soc.
ISBN: 9780821871263
Category : Mathematics
Languages : en
Pages : 328
Book Description
This volume presents the proceedings of workshops on stable homotopy theory and on unstable homotopy theory held at The Fields Institute as part of the homotopy program during the year 1996. The papers in the volume describe current research in the subject, and all included works were refereed. Rather than being a summary of work to be published elsewhere, each paper is the unique source for the new material it contains. The book contains current research from international experts in the subject area, and presents open problems with directions for future research.
Homotopy Methods in Algebraic Topology
Author: Nicholas Kuhn
Publisher: American Mathematical Soc.
ISBN: 0821826212
Category : Mathematics
Languages : en
Pages : 370
Book Description
This volume presents the proceedings from the AMS-IMS-SIAM Summer Research Conference on Homotopy Methods in Algebraic Topology held at the University of Colorado (Boulder). The conference coincided with the sixtieth birthday of J. Peter May. An article is included reflecting his wide-ranging and influential contributions to the subject area. Other articles in the book discuss the ordinary, elliptic and real-oriented Adams spectral sequences, mapping class groups, configuration spaces, extended powers, operads, the telescope conjecture, $p$-compact groups, algebraic K theory, stable and unstable splittings, the calculus of functors, the $E_{\infty}$ tensor product, and equivariant cohomology theories. The book offers a compendious source on modern aspects of homotopy theoretic methods in many algebraic settings.
Publisher: American Mathematical Soc.
ISBN: 0821826212
Category : Mathematics
Languages : en
Pages : 370
Book Description
This volume presents the proceedings from the AMS-IMS-SIAM Summer Research Conference on Homotopy Methods in Algebraic Topology held at the University of Colorado (Boulder). The conference coincided with the sixtieth birthday of J. Peter May. An article is included reflecting his wide-ranging and influential contributions to the subject area. Other articles in the book discuss the ordinary, elliptic and real-oriented Adams spectral sequences, mapping class groups, configuration spaces, extended powers, operads, the telescope conjecture, $p$-compact groups, algebraic K theory, stable and unstable splittings, the calculus of functors, the $E_{\infty}$ tensor product, and equivariant cohomology theories. The book offers a compendious source on modern aspects of homotopy theoretic methods in many algebraic settings.
Geometry and Representation Theory of Real and p-adic groups
Author: Juan Tirao
Publisher: Springer Science & Business Media
ISBN: 1461241626
Category : Mathematics
Languages : en
Pages : 330
Book Description
The representation theory of Lie groups plays a central role in both clas sical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present vol ume reflects the dual character of the workshop. Many of the articles will be accessible to graduate students and others entering the field. Here is a rough outline of the mathematical content. (The editors beg the indulgence of the readers for any lapses in this preface in the high standards of historical and mathematical accuracy that were imposed on the authors of the articles. ) Connections between flag varieties and representation theory for real re ductive groups have been studied for almost fifty years, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a detailed introduc tion to the analytic side of these developments. He describes the construction of standard tempered representations in terms of square-integrable partially harmonic forms (on certain real group orbits on a flag variety), and outlines the ingredients in the Plancherel formula. Finally, he describes recent work on the complex geometry of real group orbits on partial flag varieties.
Publisher: Springer Science & Business Media
ISBN: 1461241626
Category : Mathematics
Languages : en
Pages : 330
Book Description
The representation theory of Lie groups plays a central role in both clas sical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present vol ume reflects the dual character of the workshop. Many of the articles will be accessible to graduate students and others entering the field. Here is a rough outline of the mathematical content. (The editors beg the indulgence of the readers for any lapses in this preface in the high standards of historical and mathematical accuracy that were imposed on the authors of the articles. ) Connections between flag varieties and representation theory for real re ductive groups have been studied for almost fifty years, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a detailed introduc tion to the analytic side of these developments. He describes the construction of standard tempered representations in terms of square-integrable partially harmonic forms (on certain real group orbits on a flag variety), and outlines the ingredients in the Plancherel formula. Finally, he describes recent work on the complex geometry of real group orbits on partial flag varieties.
Representation Theory of Lie Groups
Author: Jeffrey Adams
Publisher: American Mathematical Soc.
ISBN: 1470423146
Category : Mathematics
Languages : en
Pages : 354
Book Description
This book contains written versions of the lectures given at the PCMI Graduate Summer School on the representation theory of Lie groups. The volume begins with lectures by A. Knapp and P. Trapa outlining the state of the subject around the year 1975, specifically, the fundamental results of Harish-Chandra on the general structure of infinite-dimensional representations and the Langlands classification. Additional contributions outline developments in four of the most active areas of research over the past 20 years. The clearly written articles present results to date, as follows: R. Zierau and L. Barchini discuss the construction of representations on Dolbeault cohomology spaces. D. Vogan describes the status of the Kirillov-Kostant "philosophy of coadjoint orbits" for unitary representations. K. Vilonen presents recent advances in the Beilinson-Bernstein theory of "localization". And Jian-Shu Li covers Howe's theory of "dual reductive pairs". Each contributor to the volume presents the topics in a unique, comprehensive, and accessible manner geared toward advanced graduate students and researchers. Students should have completed the standard introductory graduate courses for full comprehension of the work. The book would also serve well as a supplementary text for a course on introductory infinite-dimensional representation theory. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Publisher: American Mathematical Soc.
ISBN: 1470423146
Category : Mathematics
Languages : en
Pages : 354
Book Description
This book contains written versions of the lectures given at the PCMI Graduate Summer School on the representation theory of Lie groups. The volume begins with lectures by A. Knapp and P. Trapa outlining the state of the subject around the year 1975, specifically, the fundamental results of Harish-Chandra on the general structure of infinite-dimensional representations and the Langlands classification. Additional contributions outline developments in four of the most active areas of research over the past 20 years. The clearly written articles present results to date, as follows: R. Zierau and L. Barchini discuss the construction of representations on Dolbeault cohomology spaces. D. Vogan describes the status of the Kirillov-Kostant "philosophy of coadjoint orbits" for unitary representations. K. Vilonen presents recent advances in the Beilinson-Bernstein theory of "localization". And Jian-Shu Li covers Howe's theory of "dual reductive pairs". Each contributor to the volume presents the topics in a unique, comprehensive, and accessible manner geared toward advanced graduate students and researchers. Students should have completed the standard introductory graduate courses for full comprehension of the work. The book would also serve well as a supplementary text for a course on introductory infinite-dimensional representation theory. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Perverse Sheaves and Applications to Representation Theory
Author: Pramod N. Achar
Publisher: American Mathematical Soc.
ISBN: 1470455978
Category : Education
Languages : en
Pages : 562
Book Description
Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.
Publisher: American Mathematical Soc.
ISBN: 1470455978
Category : Education
Languages : en
Pages : 562
Book Description
Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.
Triangulated Categories in Representation Theory and Beyond
Author: Petter Andreas Bergh
Publisher: Springer Nature
ISBN: 3031577892
Category :
Languages : en
Pages : 275
Book Description
Publisher: Springer Nature
ISBN: 3031577892
Category :
Languages : en
Pages : 275
Book Description