Author: Michael J. O'Donnell
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 334
Book Description
This book describes an ongoing equational programming project that started in 1975. Within the project an equational programming language interpreter has been designed and implemented. The first part of the text (Chapters 1-10) provides a user's manual for the current implementation. The remaining sections cover the following topics: programming techniques and applications, theoretical foundations, implementation issues. Giving a brief account of the project's history (Chapter 11), the author devotes a large part of the text to techniques of equational programming at different levels of abstraction. Chapter 12 discusses low-level techniques including the distinction of constructors and defined functions, the formulation of conditional expressions and error and exception handling. High-level techniques are treated in Chapter 15 by discussing concurrency, nondeterminism, the relationship to dataflow programs and the transformation of recursive programs called dynamic programming. In Chapter 16 the author shows how to efficiently implement common data structures by equational programs. Modularity is discussed in Chapter 14. Several applications are also presented in the book. The author demonstrates the versatility of equational programming style by implementing syntactic manipulation algorithms (Chapter 13). Theoretical foundations are introduced in Chapter 17 (term rewriting systems, herein called term reduction systems). In Chapter 19 the author raises the question of a universal equational machine language and discusses the suitability of different variants of the combinator calculus for this purpose. Implementation issues are covered in Chapters 18 and 20 focused around algorithms for efficient pattern matching, sequencing and reduction. Aspects of design and coordination of the syntactic processors are presented as well.
Equational Logic as a Programming Language
Author: Michael J. O'Donnell
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 334
Book Description
This book describes an ongoing equational programming project that started in 1975. Within the project an equational programming language interpreter has been designed and implemented. The first part of the text (Chapters 1-10) provides a user's manual for the current implementation. The remaining sections cover the following topics: programming techniques and applications, theoretical foundations, implementation issues. Giving a brief account of the project's history (Chapter 11), the author devotes a large part of the text to techniques of equational programming at different levels of abstraction. Chapter 12 discusses low-level techniques including the distinction of constructors and defined functions, the formulation of conditional expressions and error and exception handling. High-level techniques are treated in Chapter 15 by discussing concurrency, nondeterminism, the relationship to dataflow programs and the transformation of recursive programs called dynamic programming. In Chapter 16 the author shows how to efficiently implement common data structures by equational programs. Modularity is discussed in Chapter 14. Several applications are also presented in the book. The author demonstrates the versatility of equational programming style by implementing syntactic manipulation algorithms (Chapter 13). Theoretical foundations are introduced in Chapter 17 (term rewriting systems, herein called term reduction systems). In Chapter 19 the author raises the question of a universal equational machine language and discusses the suitability of different variants of the combinator calculus for this purpose. Implementation issues are covered in Chapters 18 and 20 focused around algorithms for efficient pattern matching, sequencing and reduction. Aspects of design and coordination of the syntactic processors are presented as well.
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 334
Book Description
This book describes an ongoing equational programming project that started in 1975. Within the project an equational programming language interpreter has been designed and implemented. The first part of the text (Chapters 1-10) provides a user's manual for the current implementation. The remaining sections cover the following topics: programming techniques and applications, theoretical foundations, implementation issues. Giving a brief account of the project's history (Chapter 11), the author devotes a large part of the text to techniques of equational programming at different levels of abstraction. Chapter 12 discusses low-level techniques including the distinction of constructors and defined functions, the formulation of conditional expressions and error and exception handling. High-level techniques are treated in Chapter 15 by discussing concurrency, nondeterminism, the relationship to dataflow programs and the transformation of recursive programs called dynamic programming. In Chapter 16 the author shows how to efficiently implement common data structures by equational programs. Modularity is discussed in Chapter 14. Several applications are also presented in the book. The author demonstrates the versatility of equational programming style by implementing syntactic manipulation algorithms (Chapter 13). Theoretical foundations are introduced in Chapter 17 (term rewriting systems, herein called term reduction systems). In Chapter 19 the author raises the question of a universal equational machine language and discusses the suitability of different variants of the combinator calculus for this purpose. Implementation issues are covered in Chapters 18 and 20 focused around algorithms for efficient pattern matching, sequencing and reduction. Aspects of design and coordination of the syntactic processors are presented as well.
Iteration Theories
Author: Stephen L. Bloom
Publisher: Springer Science & Business Media
ISBN: 3642780342
Category : Computers
Languages : en
Pages : 636
Book Description
This monograph contains the results of our joint research over the last ten years on the logic of the fixed point operation. The intended au dience consists of graduate students and research scientists interested in mathematical treatments of semantics. We assume the reader has a good mathematical background, although we provide some prelimi nary facts in Chapter 1. Written both for graduate students and research scientists in theoret ical computer science and mathematics, the book provides a detailed investigation of the properties of the fixed point or iteration operation. Iteration plays a fundamental role in the theory of computation: for example, in the theory of automata, in formal language theory, in the study of formal power series, in the semantics of flowchart algorithms and programming languages, and in circular data type definitions. It is shown that in all structures that have been used as semantical models, the equational properties of the fixed point operation are cap tured by the axioms describing iteration theories. These structures include ordered algebras, partial functions, relations, finitary and in finitary regular languages, trees, synchronization trees, 2-categories, and others.
Publisher: Springer Science & Business Media
ISBN: 3642780342
Category : Computers
Languages : en
Pages : 636
Book Description
This monograph contains the results of our joint research over the last ten years on the logic of the fixed point operation. The intended au dience consists of graduate students and research scientists interested in mathematical treatments of semantics. We assume the reader has a good mathematical background, although we provide some prelimi nary facts in Chapter 1. Written both for graduate students and research scientists in theoret ical computer science and mathematics, the book provides a detailed investigation of the properties of the fixed point or iteration operation. Iteration plays a fundamental role in the theory of computation: for example, in the theory of automata, in formal language theory, in the study of formal power series, in the semantics of flowchart algorithms and programming languages, and in circular data type definitions. It is shown that in all structures that have been used as semantical models, the equational properties of the fixed point operation are cap tured by the axioms describing iteration theories. These structures include ordered algebras, partial functions, relations, finitary and in finitary regular languages, trees, synchronization trees, 2-categories, and others.
Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 5: Logic Programming
Author: Dov M. Gabbay
Publisher: Clarendon Press
ISBN: 0191546283
Category : Computers
Languages : en
Pages : 818
Book Description
The Handbook of Logic in Artificial Intelligence and Logic Programming is a multi-volume work covering all major areas of the application of logic to artificial intelligence and logic programming. The authors are chosen on an international basis and are leaders in the fields covered. Volume 5 is the last in this well-regarded series. Logic is now widely recognized as one of the foundational disciplines of computing. It has found applications in virtually all aspects of the subject, from software and hardware engineering to programming languages and artificial intelligence. In response to the growing need for an in-depth survey of these applications the Handbook of Logic in Artificial Intelligence and its companion, the Handbook of Logic in Computer Science have been created. The Handbooks are a combination of authoritative exposition, comprehensive survey, and fundamental research exploring the underlying themes in the various areas. Some mathematical background is assumed, and much of the material will be of interest to logicians and mathematicians. Volume 5 focuses particularly on logic programming. The chapters, which in many cases are of monograph length and scope, emphasize possible unifying themes.
Publisher: Clarendon Press
ISBN: 0191546283
Category : Computers
Languages : en
Pages : 818
Book Description
The Handbook of Logic in Artificial Intelligence and Logic Programming is a multi-volume work covering all major areas of the application of logic to artificial intelligence and logic programming. The authors are chosen on an international basis and are leaders in the fields covered. Volume 5 is the last in this well-regarded series. Logic is now widely recognized as one of the foundational disciplines of computing. It has found applications in virtually all aspects of the subject, from software and hardware engineering to programming languages and artificial intelligence. In response to the growing need for an in-depth survey of these applications the Handbook of Logic in Artificial Intelligence and its companion, the Handbook of Logic in Computer Science have been created. The Handbooks are a combination of authoritative exposition, comprehensive survey, and fundamental research exploring the underlying themes in the various areas. Some mathematical background is assumed, and much of the material will be of interest to logicians and mathematicians. Volume 5 focuses particularly on logic programming. The chapters, which in many cases are of monograph length and scope, emphasize possible unifying themes.
Fuzzy Equational Logic
Author: Radim Belohlávek
Publisher: Springer Science & Business Media
ISBN: 9783540262541
Category : Computers
Languages : en
Pages : 304
Book Description
Publisher: Springer Science & Business Media
ISBN: 9783540262541
Category : Computers
Languages : en
Pages : 304
Book Description
Foundations of Probabilistic Programming
Author: Gilles Barthe
Publisher: Cambridge University Press
ISBN: 110848851X
Category : Computers
Languages : en
Pages : 583
Book Description
This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.
Publisher: Cambridge University Press
ISBN: 110848851X
Category : Computers
Languages : en
Pages : 583
Book Description
This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.
Models, Algebras, and Proofs
Author: Xavier Caicedo
Publisher: CRC Press
ISBN: 1000657302
Category : Mathematics
Languages : en
Pages : 471
Book Description
Contains a balanced account of recent advances in set theory, model theory, algebraic logic, and proof theory, originally presented at the Tenth Latin American Symposium on Mathematical Logic held in Bogata, Columbia. Traces new interactions among logic, mathematics, and computer science. Features original research from over 30 well-known experts.
Publisher: CRC Press
ISBN: 1000657302
Category : Mathematics
Languages : en
Pages : 471
Book Description
Contains a balanced account of recent advances in set theory, model theory, algebraic logic, and proof theory, originally presented at the Tenth Latin American Symposium on Mathematical Logic held in Bogata, Columbia. Traces new interactions among logic, mathematics, and computer science. Features original research from over 30 well-known experts.
Foundations of Algebraic Specification and Formal Software Development
Author: Donald Sannella
Publisher: Springer Science & Business Media
ISBN: 3642173365
Category : Computers
Languages : en
Pages : 594
Book Description
This book provides foundations for software specification and formal software development from the perspective of work on algebraic specification, concentrating on developing basic concepts and studying their fundamental properties. These foundations are built on a solid mathematical basis, using elements of universal algebra, category theory and logic, and this mathematical toolbox provides a convenient language for precisely formulating the concepts involved in software specification and development. Once formally defined, these notions become subject to mathematical investigation, and this interplay between mathematics and software engineering yields results that are mathematically interesting, conceptually revealing, and practically useful. The theory presented by the authors has its origins in work on algebraic specifications that started in the early 1970s, and their treatment is comprehensive. This book contains five kinds of material: the requisite mathematical foundations; traditional algebraic specifications; elements of the theory of institutions; formal specification and development; and proof methods. While the book is self-contained, mathematical maturity and familiarity with the problems of software engineering is required; and in the examples that directly relate to programming, the authors assume acquaintance with the concepts of functional programming. The book will be of value to researchers and advanced graduate students in the areas of programming and theoretical computer science.
Publisher: Springer Science & Business Media
ISBN: 3642173365
Category : Computers
Languages : en
Pages : 594
Book Description
This book provides foundations for software specification and formal software development from the perspective of work on algebraic specification, concentrating on developing basic concepts and studying their fundamental properties. These foundations are built on a solid mathematical basis, using elements of universal algebra, category theory and logic, and this mathematical toolbox provides a convenient language for precisely formulating the concepts involved in software specification and development. Once formally defined, these notions become subject to mathematical investigation, and this interplay between mathematics and software engineering yields results that are mathematically interesting, conceptually revealing, and practically useful. The theory presented by the authors has its origins in work on algebraic specifications that started in the early 1970s, and their treatment is comprehensive. This book contains five kinds of material: the requisite mathematical foundations; traditional algebraic specifications; elements of the theory of institutions; formal specification and development; and proof methods. While the book is self-contained, mathematical maturity and familiarity with the problems of software engineering is required; and in the examples that directly relate to programming, the authors assume acquaintance with the concepts of functional programming. The book will be of value to researchers and advanced graduate students in the areas of programming and theoretical computer science.
Semantics and Logics of Computation
Author: Andrew M. Pitts
Publisher: Cambridge University Press
ISBN: 0521580579
Category : Computers
Languages : en
Pages : 375
Book Description
The aim of this volume is to present modern developments in semantics and logics of computation in a way that is accessible to graduate students. The book is based on a summer school at the Isaac Newton Institute and consists of a sequence of linked lecture course by international authorities in the area. The whole set have been edited to form a coherent introduction to these topics, most of which have not been presented pedagogically before.
Publisher: Cambridge University Press
ISBN: 0521580579
Category : Computers
Languages : en
Pages : 375
Book Description
The aim of this volume is to present modern developments in semantics and logics of computation in a way that is accessible to graduate students. The book is based on a summer school at the Isaac Newton Institute and consists of a sequence of linked lecture course by international authorities in the area. The whole set have been edited to form a coherent introduction to these topics, most of which have not been presented pedagogically before.
CONCUR 2008 - Concurrency Theory
Author: Franck van Breugel
Publisher: Springer
ISBN: 3540853618
Category : Computers
Languages : en
Pages : 537
Book Description
This volume contains the proceedings of the 19th International Conference on Concurrency Theory (CONCUR 2008) which took place at the University of TorontoinToronto,Canada,August19–22,2008. CONCUR2008wasco-located with the 27th Annual ACM SIGACT-SIGOPS Symposium on the Principles of Distributed Computing (PODC 2008), and the two conferences shared two invited speakers, some social events, and a symposium celebrating the lifelong research contributions of Nancy Lynch. The purpose of the CONCUR conferences is to bring together researchers, developers, and students in order to advance the theory of concurrency and promote its applications. Interest in this topic is continuously growing, as a consequence of the importance and ubiquity of concurrent systems and their applications, and of the scienti?c relevance of their foundations. Topics include basic models of concurrency (such as abstract machines, domain theoretic m- els, game theoretic models, process algebras, and Petri nets), logics for c- currency (such as modal logics, temporal logics and resource logics), models of specialized systems (such as biology-inspired systems, circuits, hybrid systems, mobile systems, multi-core processors, probabilistic systems, real-time systems, synchronoussystems, and Web services),veri?cationand analysis techniques for concurrent systems (such as abstract interpretation, atomicity checking, mod- checking, race detection, run-time veri?cation, state-space exploration, static analysis,synthesis,testing, theorem provingand type systems), andrelated p- gramming models (such as distributed or object-oriented). Of the 120 regular and 5 tool papers submitted this year, 33 regular and 2 tool papers were accepted for presentation and areincluded in the present v- ume.
Publisher: Springer
ISBN: 3540853618
Category : Computers
Languages : en
Pages : 537
Book Description
This volume contains the proceedings of the 19th International Conference on Concurrency Theory (CONCUR 2008) which took place at the University of TorontoinToronto,Canada,August19–22,2008. CONCUR2008wasco-located with the 27th Annual ACM SIGACT-SIGOPS Symposium on the Principles of Distributed Computing (PODC 2008), and the two conferences shared two invited speakers, some social events, and a symposium celebrating the lifelong research contributions of Nancy Lynch. The purpose of the CONCUR conferences is to bring together researchers, developers, and students in order to advance the theory of concurrency and promote its applications. Interest in this topic is continuously growing, as a consequence of the importance and ubiquity of concurrent systems and their applications, and of the scienti?c relevance of their foundations. Topics include basic models of concurrency (such as abstract machines, domain theoretic m- els, game theoretic models, process algebras, and Petri nets), logics for c- currency (such as modal logics, temporal logics and resource logics), models of specialized systems (such as biology-inspired systems, circuits, hybrid systems, mobile systems, multi-core processors, probabilistic systems, real-time systems, synchronoussystems, and Web services),veri?cationand analysis techniques for concurrent systems (such as abstract interpretation, atomicity checking, mod- checking, race detection, run-time veri?cation, state-space exploration, static analysis,synthesis,testing, theorem provingand type systems), andrelated p- gramming models (such as distributed or object-oriented). Of the 120 regular and 5 tool papers submitted this year, 33 regular and 2 tool papers were accepted for presentation and areincluded in the present v- ume.
Designing Reliable Distributed Systems
Author: Peter Csaba Ölveczky
Publisher: Springer
ISBN: 1447166876
Category : Computers
Languages : en
Pages : 326
Book Description
This classroom-tested textbook provides an accessible introduction to the design, formal modeling, and analysis of distributed computer systems. The book uses Maude, a rewriting logic-based language and simulation and model checking tool, which offers a simple and intuitive modeling formalism that is suitable for modeling distributed systems in an attractive object-oriented and functional programming style. Topics and features: introduces classical algebraic specification and term rewriting theory, including reasoning about termination, confluence, and equational properties; covers object-oriented modeling of distributed systems using rewriting logic, as well as temporal logic to specify requirements that a system should satisfy; provides a range of examples and case studies from different domains, to help the reader to develop an intuitive understanding of distributed systems and their design challenges; examples include classic distributed systems such as transport protocols, cryptographic protocols, and distributed transactions, leader election, and mutual execution algorithms; contains a wealth of exercises, including larger exercises suitable for course projects, and supplies executable code and supplementary material at an associated website. This self-contained textbook is designed to support undergraduate courses on formal methods and distributed systems, and will prove invaluable to any student seeking a reader-friendly introduction to formal specification, logics and inference systems, and automated model checking techniques.
Publisher: Springer
ISBN: 1447166876
Category : Computers
Languages : en
Pages : 326
Book Description
This classroom-tested textbook provides an accessible introduction to the design, formal modeling, and analysis of distributed computer systems. The book uses Maude, a rewriting logic-based language and simulation and model checking tool, which offers a simple and intuitive modeling formalism that is suitable for modeling distributed systems in an attractive object-oriented and functional programming style. Topics and features: introduces classical algebraic specification and term rewriting theory, including reasoning about termination, confluence, and equational properties; covers object-oriented modeling of distributed systems using rewriting logic, as well as temporal logic to specify requirements that a system should satisfy; provides a range of examples and case studies from different domains, to help the reader to develop an intuitive understanding of distributed systems and their design challenges; examples include classic distributed systems such as transport protocols, cryptographic protocols, and distributed transactions, leader election, and mutual execution algorithms; contains a wealth of exercises, including larger exercises suitable for course projects, and supplies executable code and supplementary material at an associated website. This self-contained textbook is designed to support undergraduate courses on formal methods and distributed systems, and will prove invaluable to any student seeking a reader-friendly introduction to formal specification, logics and inference systems, and automated model checking techniques.