Author: Christopher F. Baum
Publisher: Stata Press
ISBN: 9781597183550
Category : Environmental economics
Languages : en
Pages : 416
Book Description
Aspects of environmental change are some of the greatest challenges faced by policymakers today. The key issues addressed by environmental science are often empirical, and in many instances very detailed, sizable datasets are available. Researchers in this field should have a solid understanding of the econometric tools best suited for analysis of these data. While complex and expensive physical models of the environment exist, it is becoming increasingly clear that reduced-form econometric models have an important role to play in modeling environmental phenomena. In short, successful environmental modeling does not necessarily require a structural model, but the econometric methods underlying a reduced-form approach must be competently executed. Environmental Econometrics Using Stata provides an important starting point for this journey by presenting a broad range of applied econometric techniques for environmental econometrics and illustrating how they can be applied in Stata. The emphasis is not only on how to formulate and fit models in Stata but also on the need to use a wide range of diagnostic tests in order to validate the results of estimation and subsequent policy conclusions. This focus on careful, reproducible research should be appreciated by academic and non-academic researchers who are seeking to produce credible, defensible conclusions about key issues in environmental science.
Environmental Econometrics Using Stata
Author: Christopher F. Baum
Publisher: Stata Press
ISBN: 9781597183550
Category : Environmental economics
Languages : en
Pages : 416
Book Description
Aspects of environmental change are some of the greatest challenges faced by policymakers today. The key issues addressed by environmental science are often empirical, and in many instances very detailed, sizable datasets are available. Researchers in this field should have a solid understanding of the econometric tools best suited for analysis of these data. While complex and expensive physical models of the environment exist, it is becoming increasingly clear that reduced-form econometric models have an important role to play in modeling environmental phenomena. In short, successful environmental modeling does not necessarily require a structural model, but the econometric methods underlying a reduced-form approach must be competently executed. Environmental Econometrics Using Stata provides an important starting point for this journey by presenting a broad range of applied econometric techniques for environmental econometrics and illustrating how they can be applied in Stata. The emphasis is not only on how to formulate and fit models in Stata but also on the need to use a wide range of diagnostic tests in order to validate the results of estimation and subsequent policy conclusions. This focus on careful, reproducible research should be appreciated by academic and non-academic researchers who are seeking to produce credible, defensible conclusions about key issues in environmental science.
Publisher: Stata Press
ISBN: 9781597183550
Category : Environmental economics
Languages : en
Pages : 416
Book Description
Aspects of environmental change are some of the greatest challenges faced by policymakers today. The key issues addressed by environmental science are often empirical, and in many instances very detailed, sizable datasets are available. Researchers in this field should have a solid understanding of the econometric tools best suited for analysis of these data. While complex and expensive physical models of the environment exist, it is becoming increasingly clear that reduced-form econometric models have an important role to play in modeling environmental phenomena. In short, successful environmental modeling does not necessarily require a structural model, but the econometric methods underlying a reduced-form approach must be competently executed. Environmental Econometrics Using Stata provides an important starting point for this journey by presenting a broad range of applied econometric techniques for environmental econometrics and illustrating how they can be applied in Stata. The emphasis is not only on how to formulate and fit models in Stata but also on the need to use a wide range of diagnostic tests in order to validate the results of estimation and subsequent policy conclusions. This focus on careful, reproducible research should be appreciated by academic and non-academic researchers who are seeking to produce credible, defensible conclusions about key issues in environmental science.
An Introduction to Modern Econometrics Using Stata
Author: Christopher F. Baum
Publisher: Stata Press
ISBN: 1597180130
Category : Business & Economics
Languages : en
Pages : 362
Book Description
Integrating a contemporary approach to econometrics with the powerful computational tools offered by Stata, this introduction illustrates how to apply econometric theories used in modern empirical research using Stata. The author emphasizes the role of method-of-moments estimators, hypothesis testing, and specification analysis and provides practical examples that show how to apply the theories to real data sets. The book first builds familiarity with the basic skills needed to work with econometric data in Stata before delving into the core topics, which range from the multiple linear regression model to instrumental-variables estimation.
Publisher: Stata Press
ISBN: 1597180130
Category : Business & Economics
Languages : en
Pages : 362
Book Description
Integrating a contemporary approach to econometrics with the powerful computational tools offered by Stata, this introduction illustrates how to apply econometric theories used in modern empirical research using Stata. The author emphasizes the role of method-of-moments estimators, hypothesis testing, and specification analysis and provides practical examples that show how to apply the theories to real data sets. The book first builds familiarity with the basic skills needed to work with econometric data in Stata before delving into the core topics, which range from the multiple linear regression model to instrumental-variables estimation.
A Practitioner's Guide to Stochastic Frontier Analysis Using Stata
Author: Subal C. Kumbhakar
Publisher: Cambridge University Press
ISBN: 1316194493
Category : Business & Economics
Languages : en
Pages : 375
Book Description
A Practitioner's Guide to Stochastic Frontier Analysis Using Stata provides practitioners in academia and industry with a step-by-step guide on how to conduct efficiency analysis using the stochastic frontier approach. The authors explain in detail how to estimate production, cost, and profit efficiency and introduce the basic theory of each model in an accessible way, using empirical examples that demonstrate the interpretation and application of models. This book also provides computer code, allowing users to apply the models in their own work, and incorporates the most recent stochastic frontier models developed in academic literature. Such recent developments include models of heteroscedasticity and exogenous determinants of inefficiency, scaling models, panel models with time-varying inefficiency, growth models, and panel models that separate firm effects and persistent and transient inefficiency. Immensely helpful to applied researchers, this book bridges the chasm between theory and practice, expanding the range of applications in which production frontier analysis may be implemented.
Publisher: Cambridge University Press
ISBN: 1316194493
Category : Business & Economics
Languages : en
Pages : 375
Book Description
A Practitioner's Guide to Stochastic Frontier Analysis Using Stata provides practitioners in academia and industry with a step-by-step guide on how to conduct efficiency analysis using the stochastic frontier approach. The authors explain in detail how to estimate production, cost, and profit efficiency and introduce the basic theory of each model in an accessible way, using empirical examples that demonstrate the interpretation and application of models. This book also provides computer code, allowing users to apply the models in their own work, and incorporates the most recent stochastic frontier models developed in academic literature. Such recent developments include models of heteroscedasticity and exogenous determinants of inefficiency, scaling models, panel models with time-varying inefficiency, growth models, and panel models that separate firm effects and persistent and transient inefficiency. Immensely helpful to applied researchers, this book bridges the chasm between theory and practice, expanding the range of applications in which production frontier analysis may be implemented.
Econometrics in Theory and Practice
Author: Panchanan Das
Publisher: Springer Nature
ISBN: 9813290196
Category : Business & Economics
Languages : en
Pages : 574
Book Description
This book introduces econometric analysis of cross section, time series and panel data with the application of statistical software. It serves as a basic text for those who wish to learn and apply econometric analysis in empirical research. The level of presentation is as simple as possible to make it useful for undergraduates as well as graduate students. It contains several examples with real data and Stata programmes and interpretation of the results. While discussing the statistical tools needed to understand empirical economic research, the book attempts to provide a balance between theory and applied research. Various concepts and techniques of econometric analysis are supported by carefully developed examples with the use of statistical software package, Stata 15.1, and assumes that the reader is somewhat familiar with the Strata software. The topics covered in this book are divided into four parts. Part I discusses introductory econometric methods for data analysis that economists and other social scientists use to estimate the economic and social relationships, and to test hypotheses about them, using real-world data. There are five chapters in this part covering the data management issues, details of linear regression models, the related problems due to violation of the classical assumptions. Part II discusses some advanced topics used frequently in empirical research with cross section data. In its three chapters, this part includes some specific problems of regression analysis. Part III deals with time series econometric analysis. It covers intensively both the univariate and multivariate time series econometric models and their applications with software programming in six chapters. Part IV takes care of panel data analysis in four chapters. Different aspects of fixed effects and random effects are discussed here. Panel data analysis has been extended by taking dynamic panel data models which are most suitable for macroeconomic research. The book is invaluable for students and researchers of social sciences, business, management, operations research, engineering, and applied mathematics.
Publisher: Springer Nature
ISBN: 9813290196
Category : Business & Economics
Languages : en
Pages : 574
Book Description
This book introduces econometric analysis of cross section, time series and panel data with the application of statistical software. It serves as a basic text for those who wish to learn and apply econometric analysis in empirical research. The level of presentation is as simple as possible to make it useful for undergraduates as well as graduate students. It contains several examples with real data and Stata programmes and interpretation of the results. While discussing the statistical tools needed to understand empirical economic research, the book attempts to provide a balance between theory and applied research. Various concepts and techniques of econometric analysis are supported by carefully developed examples with the use of statistical software package, Stata 15.1, and assumes that the reader is somewhat familiar with the Strata software. The topics covered in this book are divided into four parts. Part I discusses introductory econometric methods for data analysis that economists and other social scientists use to estimate the economic and social relationships, and to test hypotheses about them, using real-world data. There are five chapters in this part covering the data management issues, details of linear regression models, the related problems due to violation of the classical assumptions. Part II discusses some advanced topics used frequently in empirical research with cross section data. In its three chapters, this part includes some specific problems of regression analysis. Part III deals with time series econometric analysis. It covers intensively both the univariate and multivariate time series econometric models and their applications with software programming in six chapters. Part IV takes care of panel data analysis in four chapters. Different aspects of fixed effects and random effects are discussed here. Panel data analysis has been extended by taking dynamic panel data models which are most suitable for macroeconomic research. The book is invaluable for students and researchers of social sciences, business, management, operations research, engineering, and applied mathematics.
A Course in Environmental Economics
Author: Daniel J. Phaneuf
Publisher: Cambridge University Press
ISBN: 1316867358
Category : Business & Economics
Languages : en
Pages : 1301
Book Description
This unique graduate textbook offers a compelling narrative of the growing field of environmental economics that integrates theory, policy, and empirical topics. Daniel J. Phaneuf and Till Requate present both traditional and emerging perspectives, incorporating cutting-edge research in a way that allows students to easily identify connections and common themes. Their comprehensive approach gives instructors the flexibility to cover a range of topics, including important issues - such as tax interaction, environmental liability rules, modern treatments of incomplete information, technology adoption and innovation, and international environmental problems - that are not discussed in other graduate-levels texts. Numerous data-based examples and end-of-chapter exercises show students how theoretical and applied research findings are complementary, and will enable them to develop skills and interests in all areas of the field. Additional data sets and exercises can be accessed online, providing ample opportunity for practice. For more information, visit the book's website at http://phaneuf-requate.com/.
Publisher: Cambridge University Press
ISBN: 1316867358
Category : Business & Economics
Languages : en
Pages : 1301
Book Description
This unique graduate textbook offers a compelling narrative of the growing field of environmental economics that integrates theory, policy, and empirical topics. Daniel J. Phaneuf and Till Requate present both traditional and emerging perspectives, incorporating cutting-edge research in a way that allows students to easily identify connections and common themes. Their comprehensive approach gives instructors the flexibility to cover a range of topics, including important issues - such as tax interaction, environmental liability rules, modern treatments of incomplete information, technology adoption and innovation, and international environmental problems - that are not discussed in other graduate-levels texts. Numerous data-based examples and end-of-chapter exercises show students how theoretical and applied research findings are complementary, and will enable them to develop skills and interests in all areas of the field. Additional data sets and exercises can be accessed online, providing ample opportunity for practice. For more information, visit the book's website at http://phaneuf-requate.com/.
Semiparametric Regression for the Applied Econometrician
Author: Adonis Yatchew
Publisher: Cambridge University Press
ISBN: 9780521012263
Category : Business & Economics
Languages : en
Pages : 238
Book Description
This book provides an accessible collection of techniques for analyzing nonparametric and semiparametric regression models. Worked examples include estimation of Engel curves and equivalence scales, scale economies, semiparametric Cobb-Douglas, translog and CES cost functions, household gasoline consumption, hedonic housing prices, option prices and state price density estimation. The book should be of interest to a broad range of economists including those working in industrial organization, labor, development, urban, energy and financial economics. A variety of testing procedures are covered including simple goodness of fit tests and residual regression tests. These procedures can be used to test hypotheses such as parametric and semiparametric specifications, significance, monotonicity and additive separability. Other topics include endogeneity of parametric and nonparametric effects, as well as heteroskedasticity and autocorrelation in the residuals. Bootstrap procedures are provided.
Publisher: Cambridge University Press
ISBN: 9780521012263
Category : Business & Economics
Languages : en
Pages : 238
Book Description
This book provides an accessible collection of techniques for analyzing nonparametric and semiparametric regression models. Worked examples include estimation of Engel curves and equivalence scales, scale economies, semiparametric Cobb-Douglas, translog and CES cost functions, household gasoline consumption, hedonic housing prices, option prices and state price density estimation. The book should be of interest to a broad range of economists including those working in industrial organization, labor, development, urban, energy and financial economics. A variety of testing procedures are covered including simple goodness of fit tests and residual regression tests. These procedures can be used to test hypotheses such as parametric and semiparametric specifications, significance, monotonicity and additive separability. Other topics include endogeneity of parametric and nonparametric effects, as well as heteroskedasticity and autocorrelation in the residuals. Bootstrap procedures are provided.
Introduction to Time Series Using Stata
Author: Sean Becketti
Publisher:
ISBN: 9781597183062
Category : Mathematical statistics
Languages : en
Pages : 446
Book Description
Introduction to Time Series Using Stata, Revised Edition, by Sean Becketti, is a practical guide to working with time-series data using Stata. In this book, Becketti introduces time-series techniques--from simple to complex--and explains how to implement them using Stata. The many worked examples, concise explanations that focus on intuition, and useful tips based on the author's experience make the book insightful for students, academic researchers, and practitioners in industry and government.Becketti is a financial industry veteran with decades of experience in academics, government, and private industry. He was also a developer of Stata in its infancy and has been a regular Stata user since its inception. He wrote many of the first time-series commands in Stata. With his abundant knowledge of Stata and extensive experience with real-world time-series applications, Becketti provides readers with unique insights and motivation throughout the book.For those new to Stata, the book begins with a mild yet fast-paced introduction to Stata, highlighting all the features you need to know to get started using Stata for time-series analysis. Before diving into analysis of time series, Becketti includes a quick refresher on statistical foundations such as regression and hypothesis testing.The discussion of time-series analysis begins with techniques for smoothing time series. As the moving-average and Holt-Winters techniques are introduced, Becketti explains the concepts of trends, cyclicality, and seasonality and shows how they can be extracted from a series. The book then illustrates how to use these methods for forecasting. Although these techniques are sometimes neglected in other time-series books, they are easy to implement, can be applied quickly, often produce forecasts just as good as more complicated techniques, and, as Becketti emphasizes, have the distinct advantage of being easily explained to colleagues and policy makers without backgrounds in statistics.Next, the book focuses on single-equation time-series models. Becketti discusses regression analysis in the presence of autocorrelated disturbances as well as the ARIMA model and Box-Jenkins methodology. An entire chapter is devoted to applying these techniques to develop an ARIMA-based model of U.S. GDP; this will appeal to practitioners, in particular, because it goes step by step through a real-world example: here is my series, now how do I fit an ARIMA model to it? The discussion of single-equation models concludes with a self-contained summary of ARCH/GARCH modeling.In the final portion of the book, Becketti discusses multiple-equation models. He introduces VAR models and uses a simple model of the U.S. economy to illustrate all key concepts, including model specification, Granger causality, impulse-response analyses, and forecasting. Attention then turns to nonstationary time-series. Becketti masterfully navigates the reader through the often-confusing task of specifying a VEC model, using an example based on construction wages in Washington, DC, and surrounding states.Introduction to Time Series Using Stata, Revised Edition, by Sean Becketti, is a first-rate, example-based guide to time-series analysis and forecasting using Stata. This is a must-have resource for researchers and students learning to analyze time-series data and for anyone wanting to implement time-series methods in Stata. [ed.]
Publisher:
ISBN: 9781597183062
Category : Mathematical statistics
Languages : en
Pages : 446
Book Description
Introduction to Time Series Using Stata, Revised Edition, by Sean Becketti, is a practical guide to working with time-series data using Stata. In this book, Becketti introduces time-series techniques--from simple to complex--and explains how to implement them using Stata. The many worked examples, concise explanations that focus on intuition, and useful tips based on the author's experience make the book insightful for students, academic researchers, and practitioners in industry and government.Becketti is a financial industry veteran with decades of experience in academics, government, and private industry. He was also a developer of Stata in its infancy and has been a regular Stata user since its inception. He wrote many of the first time-series commands in Stata. With his abundant knowledge of Stata and extensive experience with real-world time-series applications, Becketti provides readers with unique insights and motivation throughout the book.For those new to Stata, the book begins with a mild yet fast-paced introduction to Stata, highlighting all the features you need to know to get started using Stata for time-series analysis. Before diving into analysis of time series, Becketti includes a quick refresher on statistical foundations such as regression and hypothesis testing.The discussion of time-series analysis begins with techniques for smoothing time series. As the moving-average and Holt-Winters techniques are introduced, Becketti explains the concepts of trends, cyclicality, and seasonality and shows how they can be extracted from a series. The book then illustrates how to use these methods for forecasting. Although these techniques are sometimes neglected in other time-series books, they are easy to implement, can be applied quickly, often produce forecasts just as good as more complicated techniques, and, as Becketti emphasizes, have the distinct advantage of being easily explained to colleagues and policy makers without backgrounds in statistics.Next, the book focuses on single-equation time-series models. Becketti discusses regression analysis in the presence of autocorrelated disturbances as well as the ARIMA model and Box-Jenkins methodology. An entire chapter is devoted to applying these techniques to develop an ARIMA-based model of U.S. GDP; this will appeal to practitioners, in particular, because it goes step by step through a real-world example: here is my series, now how do I fit an ARIMA model to it? The discussion of single-equation models concludes with a self-contained summary of ARCH/GARCH modeling.In the final portion of the book, Becketti discusses multiple-equation models. He introduces VAR models and uses a simple model of the U.S. economy to illustrate all key concepts, including model specification, Granger causality, impulse-response analyses, and forecasting. Attention then turns to nonstationary time-series. Becketti masterfully navigates the reader through the often-confusing task of specifying a VEC model, using an example based on construction wages in Washington, DC, and surrounding states.Introduction to Time Series Using Stata, Revised Edition, by Sean Becketti, is a first-rate, example-based guide to time-series analysis and forecasting using Stata. This is a must-have resource for researchers and students learning to analyze time-series data and for anyone wanting to implement time-series methods in Stata. [ed.]
Introductory Econometrics for Finance
Author: Chris Brooks
Publisher: Cambridge University Press
ISBN: 1139472305
Category : Business & Economics
Languages : en
Pages : 752
Book Description
This best-selling textbook addresses the need for an introduction to econometrics specifically written for finance students. Key features: • Thoroughly revised and updated, including two new chapters on panel data and limited dependent variable models • Problem-solving approach assumes no prior knowledge of econometrics emphasising intuition rather than formulae, giving students the skills and confidence to estimate and interpret models • Detailed examples and case studies from finance show students how techniques are applied in real research • Sample instructions and output from the popular computer package EViews enable students to implement models themselves and understand how to interpret results • Gives advice on planning and executing a project in empirical finance, preparing students for using econometrics in practice • Covers important modern topics such as time-series forecasting, volatility modelling, switching models and simulation methods • Thoroughly class-tested in leading finance schools. Bundle with EViews student version 6 available. Please contact us for more details.
Publisher: Cambridge University Press
ISBN: 1139472305
Category : Business & Economics
Languages : en
Pages : 752
Book Description
This best-selling textbook addresses the need for an introduction to econometrics specifically written for finance students. Key features: • Thoroughly revised and updated, including two new chapters on panel data and limited dependent variable models • Problem-solving approach assumes no prior knowledge of econometrics emphasising intuition rather than formulae, giving students the skills and confidence to estimate and interpret models • Detailed examples and case studies from finance show students how techniques are applied in real research • Sample instructions and output from the popular computer package EViews enable students to implement models themselves and understand how to interpret results • Gives advice on planning and executing a project in empirical finance, preparing students for using econometrics in practice • Covers important modern topics such as time-series forecasting, volatility modelling, switching models and simulation methods • Thoroughly class-tested in leading finance schools. Bundle with EViews student version 6 available. Please contact us for more details.
Fundamentals of Applied Econometrics
Author: Richard A. Ashley
Publisher: Wiley Global Education
ISBN: 1118213513
Category : Business & Economics
Languages : en
Pages : 740
Book Description
Fundamentals of Applied Econometrics is designed for an applied, undergraduate econometrics course providing students with an understanding of the most fundamental econometric ideas and tools. The text serves both the student whose interest is in understanding how one can use sample data to illuminate economic theory and the student who wants and needs a solid intellectual foundation on which to build practical experiential expertise. Divided into two parts, the first half provides a thorough undergraduate-level treatment of multiple regressions including an extensive statistics review with integrated, hands-on Acting Learning Exercises so students learn by doing. The second half of the book covers a number of advanced topics: panel data modeling, time series analysis, binary-choice modeling, and an introduction to GMM. This latter portion of the book is very suitable for a more advanced course: a second-term undergraduate course, a Masters level course, or as a companion reading for a Doctoral level course.
Publisher: Wiley Global Education
ISBN: 1118213513
Category : Business & Economics
Languages : en
Pages : 740
Book Description
Fundamentals of Applied Econometrics is designed for an applied, undergraduate econometrics course providing students with an understanding of the most fundamental econometric ideas and tools. The text serves both the student whose interest is in understanding how one can use sample data to illuminate economic theory and the student who wants and needs a solid intellectual foundation on which to build practical experiential expertise. Divided into two parts, the first half provides a thorough undergraduate-level treatment of multiple regressions including an extensive statistics review with integrated, hands-on Acting Learning Exercises so students learn by doing. The second half of the book covers a number of advanced topics: panel data modeling, time series analysis, binary-choice modeling, and an introduction to GMM. This latter portion of the book is very suitable for a more advanced course: a second-term undergraduate course, a Masters level course, or as a companion reading for a Doctoral level course.
Econometric Modelling with Time Series
Author: Vance Martin
Publisher: Cambridge University Press
ISBN: 0521139813
Category : Business & Economics
Languages : en
Pages : 925
Book Description
"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.
Publisher: Cambridge University Press
ISBN: 0521139813
Category : Business & Economics
Languages : en
Pages : 925
Book Description
"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.