Author: Vijay P. Singh
Publisher: John Wiley & Sons
ISBN: 1118428609
Category : Science
Languages : en
Pages : 787
Book Description
Entropy Theory and its Application in Environmental and Water Engineering responds to the need for a book that deals with basic concepts of entropy theory from a hydrologic and water engineering perspective and then for a book that deals with applications of these concepts to a range of water engineering problems. The range of applications of entropy is constantly expanding and new areas finding a use for the theory are continually emerging. The applications of concepts and techniques vary across different subject areas and this book aims to relate them directly to practical problems of environmental and water engineering. The book presents and explains the Principle of Maximum Entropy (POME) and the Principle of Minimum Cross Entropy (POMCE) and their applications to different types of probability distributions. Spatial and inverse spatial entropy are important for urban planning and are presented with clarity. Maximum entropy spectral analysis and minimum cross entropy spectral analysis are powerful techniques for addressing a variety of problems faced by environmental and water scientists and engineers and are described here with illustrative examples. Giving a thorough introduction to the use of entropy to measure the unpredictability in environmental and water systems this book will add an essential statistical method to the toolkit of postgraduates, researchers and academic hydrologists, water resource managers, environmental scientists and engineers. It will also offer a valuable resource for professionals in the same areas, governmental organizations, private companies as well as students in earth sciences, civil and agricultural engineering, and agricultural and rangeland sciences. This book: Provides a thorough introduction to entropy for beginners and more experienced users Uses numerous examples to illustrate the applications of the theoretical principles Allows the reader to apply entropy theory to the solution of practical problems Assumes minimal existing mathematical knowledge Discusses the theory and its various aspects in both univariate and bivariate cases Covers newly expanding areas including neural networks from an entropy perspective and future developments.
Entropy Theory and its Application in Environmental and Water Engineering
Entropy Applications in Environmental and Water Engineering
Author: Huijuan Cui
Publisher: MDPI
ISBN: 3038972223
Category : Technology & Engineering
Languages : en
Pages : 512
Book Description
Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Rényi, Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.
Publisher: MDPI
ISBN: 3038972223
Category : Technology & Engineering
Languages : en
Pages : 512
Book Description
Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Rényi, Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.
Generalized Frequency Distributions for Environmental and Water Engineering
Author: Vijay P. Singh
Publisher: Cambridge University Press
ISBN: 1316516849
Category : Nature
Languages : en
Pages : 333
Book Description
Overview of systems of frequency distributions, their properties, applications to the fields of water resources and environmental engineering.
Publisher: Cambridge University Press
ISBN: 1316516849
Category : Nature
Languages : en
Pages : 333
Book Description
Overview of systems of frequency distributions, their properties, applications to the fields of water resources and environmental engineering.
Entropy Theory in Hydrologic Science and Engineering
Author: Vijay P. Singh
Publisher: McGraw Hill Professional
ISBN: 0071835474
Category : Technology & Engineering
Languages : en
Pages : 849
Book Description
A THOROUGH INTRODUCTION TO ENTROPY THEORY AND ITS APPLICATIONS IN HYDROLOGIC SCIENCE AND ENGINEERING This comprehensive volume addresses basic concepts of entropy theory from a hydrologic engineering perspective. The application of these concepts to a wide range of hydrologic engineering problems is discussed in detail. The book is divided into sections--preliminaries, rainfall and evapotranspiration, subsurface flow, surface flow, and environmental considerations. Helpful equations, solutions, tables, and diagrams are included throughout this practical resource. Entropy Theory in Hydrologic Science and Engineering covers: Introduction to entropy theory Maximum entropy production principle Performance measures Morphological analysis Evaluation and design of sampling and measurement networks Precipitation variability Rainfall frequency distributions Evaluation of precipitation forecasting schemes Assessment of potential water resources availability Evaporation Infiltration Soil moisture Groundwater flow Rainfall-runoff modeling Streamflow simulation Hydrologic frequency analysis Streamflow forecasting River flow regime classification Sediment yield Eco-index
Publisher: McGraw Hill Professional
ISBN: 0071835474
Category : Technology & Engineering
Languages : en
Pages : 849
Book Description
A THOROUGH INTRODUCTION TO ENTROPY THEORY AND ITS APPLICATIONS IN HYDROLOGIC SCIENCE AND ENGINEERING This comprehensive volume addresses basic concepts of entropy theory from a hydrologic engineering perspective. The application of these concepts to a wide range of hydrologic engineering problems is discussed in detail. The book is divided into sections--preliminaries, rainfall and evapotranspiration, subsurface flow, surface flow, and environmental considerations. Helpful equations, solutions, tables, and diagrams are included throughout this practical resource. Entropy Theory in Hydrologic Science and Engineering covers: Introduction to entropy theory Maximum entropy production principle Performance measures Morphological analysis Evaluation and design of sampling and measurement networks Precipitation variability Rainfall frequency distributions Evaluation of precipitation forecasting schemes Assessment of potential water resources availability Evaporation Infiltration Soil moisture Groundwater flow Rainfall-runoff modeling Streamflow simulation Hydrologic frequency analysis Streamflow forecasting River flow regime classification Sediment yield Eco-index
Entropy Theory in Hydraulic Engineering
Author: Vijay P. Singh
Publisher:
ISBN: 9780784412725
Category : Electronic books
Languages : en
Pages : 785
Book Description
Vijay Singh explains the basic concepts of entropy theory from a hydraulic perspective and demonstrates the theory's application in solving practical engineering problems.
Publisher:
ISBN: 9780784412725
Category : Electronic books
Languages : en
Pages : 785
Book Description
Vijay Singh explains the basic concepts of entropy theory from a hydraulic perspective and demonstrates the theory's application in solving practical engineering problems.
Climate Change in Sustainable Water Resources Management
Author: Omid Bozorg-Haddad
Publisher: Springer Nature
ISBN: 9811918988
Category : Science
Languages : en
Pages : 419
Book Description
This book provides a comprehensive approach to all aspects of water-related subjects affected by climate change that expand readers' attitudes toward future of the management strategies and improve management plans. It summarizes climate change scenarios, models, downscaling methods, and how to select the appropriate method. It also introduces practical steps in assessing climate change impacts on water issues through introducing hydrological models and climate change data applications in hydrologic analysis. The book caters to specialist readers who are interested in analyzing climate change effects on water resources, and related issues can gain a profound understanding of the practical concepts and step-by-step analysis, which is enriched with real case studies all around the world. Moreover, readers will be familiar with potential mitigation and adaptation measures in sustainable water engineering, considering the results of hydrologic modeling.
Publisher: Springer Nature
ISBN: 9811918988
Category : Science
Languages : en
Pages : 419
Book Description
This book provides a comprehensive approach to all aspects of water-related subjects affected by climate change that expand readers' attitudes toward future of the management strategies and improve management plans. It summarizes climate change scenarios, models, downscaling methods, and how to select the appropriate method. It also introduces practical steps in assessing climate change impacts on water issues through introducing hydrological models and climate change data applications in hydrologic analysis. The book caters to specialist readers who are interested in analyzing climate change effects on water resources, and related issues can gain a profound understanding of the practical concepts and step-by-step analysis, which is enriched with real case studies all around the world. Moreover, readers will be familiar with potential mitigation and adaptation measures in sustainable water engineering, considering the results of hydrologic modeling.
Chaos in Hydrology
Author: Bellie Sivakumar
Publisher: Springer
ISBN: 9048125529
Category : Science
Languages : en
Pages : 408
Book Description
This authoritative book presents a comprehensive account of the essential roles of nonlinear dynamic and chaos theories in understanding, modeling, and forecasting hydrologic systems. This is done through a systematic presentation of: (1) information on the salient characteristics of hydrologic systems and on the existing theories for their modeling; (2) the fundamentals of nonlinear dynamic and chaos theories, methods for chaos identification and prediction, and associated issues; (3) a review of the applications of chaos theory in hydrology; and (4) the scope and potential directions for the future. This book bridges the divide between the deterministic and the stochastic schools in hydrology, and is well suited as a textbook for hydrology courses.
Publisher: Springer
ISBN: 9048125529
Category : Science
Languages : en
Pages : 408
Book Description
This authoritative book presents a comprehensive account of the essential roles of nonlinear dynamic and chaos theories in understanding, modeling, and forecasting hydrologic systems. This is done through a systematic presentation of: (1) information on the salient characteristics of hydrologic systems and on the existing theories for their modeling; (2) the fundamentals of nonlinear dynamic and chaos theories, methods for chaos identification and prediction, and associated issues; (3) a review of the applications of chaos theory in hydrology; and (4) the scope and potential directions for the future. This book bridges the divide between the deterministic and the stochastic schools in hydrology, and is well suited as a textbook for hydrology courses.
Physics of Complex Systems
Author: Dragutin T. Mihailović
Publisher: CRC Press
ISBN: 1000927199
Category : Science
Languages : en
Pages : 210
Book Description
This book analyses the physics of complex systems to elaborate the problems encountered in teaching and research. Inspired by the of Kurt Gödel (including his incompleteness theorems) it considers the concept of time, the idea of models and the concept of complexity before trying to assess the state of physics in general. Using both general and practical examples, the idea of information is discussed, emphasizing its physical interpretation, debates ideas in depth using examples and evidence to provide detailed considerations on the topics. Based on the authors’ own research on these topics, this book puts forward the idea that the application of information measures can provide new results in the study of complex systems. Helpful for those already familiar with the concepts who wish to deepen their critical understanding, Physics of Complex Systems will be extremely valuable both for people that are already involved in complex systems and also readers beginning their journey into the subject. This work will encourage readers to follow and continue these ideas, enabling them to investigate the various topics further.
Publisher: CRC Press
ISBN: 1000927199
Category : Science
Languages : en
Pages : 210
Book Description
This book analyses the physics of complex systems to elaborate the problems encountered in teaching and research. Inspired by the of Kurt Gödel (including his incompleteness theorems) it considers the concept of time, the idea of models and the concept of complexity before trying to assess the state of physics in general. Using both general and practical examples, the idea of information is discussed, emphasizing its physical interpretation, debates ideas in depth using examples and evidence to provide detailed considerations on the topics. Based on the authors’ own research on these topics, this book puts forward the idea that the application of information measures can provide new results in the study of complex systems. Helpful for those already familiar with the concepts who wish to deepen their critical understanding, Physics of Complex Systems will be extremely valuable both for people that are already involved in complex systems and also readers beginning their journey into the subject. This work will encourage readers to follow and continue these ideas, enabling them to investigate the various topics further.
The Sustainable City VIII (2 Volume Set)
Author: S.S. Zubir
Publisher: WIT Press
ISBN: 1845647467
Category : Architecture
Languages : en
Pages : 1429
Book Description
With majority of the Earth’s people now urban dwellers, and cities being the most efficient habitat for the utilisation of resources, it is imperative that we continue to support standards of living and efficiencies of urban areas. However, the urbanisation process has not been without its problems. While much has been done to address the original issues surrounding the quality of urban life, new challenges continue to arise. It is no longer sustainable to achieve improvements by means that require greater and greater energy consumption as we did in the past. Despite their complexity, however, cities are a great laboratory for architects, engineers, and other key professionals to apply new ideas and new technology to meet our requirements for more sustainable city environments. Containing papers presented at the latest in a series of conferences organised by the Wessex Institute of Technology, these proceedings, split in to two volumes address not just environmental, architectural, and engineering concerns, but also quality of life, security, risk, and heritage. The diversity of topics and the case studies based on existing projects make the book an important contribution to the literature on urban planning.
Publisher: WIT Press
ISBN: 1845647467
Category : Architecture
Languages : en
Pages : 1429
Book Description
With majority of the Earth’s people now urban dwellers, and cities being the most efficient habitat for the utilisation of resources, it is imperative that we continue to support standards of living and efficiencies of urban areas. However, the urbanisation process has not been without its problems. While much has been done to address the original issues surrounding the quality of urban life, new challenges continue to arise. It is no longer sustainable to achieve improvements by means that require greater and greater energy consumption as we did in the past. Despite their complexity, however, cities are a great laboratory for architects, engineers, and other key professionals to apply new ideas and new technology to meet our requirements for more sustainable city environments. Containing papers presented at the latest in a series of conferences organised by the Wessex Institute of Technology, these proceedings, split in to two volumes address not just environmental, architectural, and engineering concerns, but also quality of life, security, risk, and heritage. The diversity of topics and the case studies based on existing projects make the book an important contribution to the literature on urban planning.
Entropy-Based Parameter Estimation in Hydrology
Author: Vijay Singh
Publisher: Springer Science & Business Media
ISBN: 9780792352242
Category : Science
Languages : en
Pages : 400
Book Description
Since the pioneering work of Shannon in the late 1940's on the development of the theory of entropy and the landmark contributions of Jaynes a decade later leading to the development of the principle of maximum entropy (POME), the concept of entropy has been increasingly applied in a wide spectrum of areas, including chemistry, electronics and communications engineering, data acquisition and storage and retreival, data monitoring network design, ecology, economics, environmental engineering, earth sciences, fluid mechanics, genetics, geology, geomorphology, geophysics, geotechnical engineering, hydraulics, hydrology, image processing, management sciences, operations research, pattern recognition and identification, photogrammetry, psychology, physics and quantum mechanics, reliability analysis, reservoir engineering, statistical mechanics, thermodynamics, topology, transportation engineering, turbulence modeling, and so on. New areas finding application of entropy have since continued to unfold. The entropy concept is indeed versatile and its applicability widespread. In the area of hydrology and water resources, a range of applications of entropy have been reported during the past three decades or so. This book focuses on parameter estimation using entropy for a number of distributions frequently used in hydrology. In the entropy-based parameter estimation the distribution parameters are expressed in terms of the given information, called constraints. Thus, the method lends itself to a physical interpretation of the parameters. Because the information to be specified usually constitutes sufficient statistics for the distribution under consideration, the entropy method provides a quantitative way to express the information contained in the distribution.
Publisher: Springer Science & Business Media
ISBN: 9780792352242
Category : Science
Languages : en
Pages : 400
Book Description
Since the pioneering work of Shannon in the late 1940's on the development of the theory of entropy and the landmark contributions of Jaynes a decade later leading to the development of the principle of maximum entropy (POME), the concept of entropy has been increasingly applied in a wide spectrum of areas, including chemistry, electronics and communications engineering, data acquisition and storage and retreival, data monitoring network design, ecology, economics, environmental engineering, earth sciences, fluid mechanics, genetics, geology, geomorphology, geophysics, geotechnical engineering, hydraulics, hydrology, image processing, management sciences, operations research, pattern recognition and identification, photogrammetry, psychology, physics and quantum mechanics, reliability analysis, reservoir engineering, statistical mechanics, thermodynamics, topology, transportation engineering, turbulence modeling, and so on. New areas finding application of entropy have since continued to unfold. The entropy concept is indeed versatile and its applicability widespread. In the area of hydrology and water resources, a range of applications of entropy have been reported during the past three decades or so. This book focuses on parameter estimation using entropy for a number of distributions frequently used in hydrology. In the entropy-based parameter estimation the distribution parameters are expressed in terms of the given information, called constraints. Thus, the method lends itself to a physical interpretation of the parameters. Because the information to be specified usually constitutes sufficient statistics for the distribution under consideration, the entropy method provides a quantitative way to express the information contained in the distribution.