Author: Ansgar Jüngel
Publisher: Springer
ISBN: 3319342193
Category : Mathematics
Languages : en
Pages : 146
Book Description
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Entropy Methods for Diffusive Partial Differential Equations
Author: Ansgar Jüngel
Publisher: Springer
ISBN: 3319342193
Category : Mathematics
Languages : en
Pages : 146
Book Description
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Publisher: Springer
ISBN: 3319342193
Category : Mathematics
Languages : en
Pages : 146
Book Description
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Entropy Methods for the Boltzmann Equation
Author:
Publisher: Springer Science & Business Media
ISBN: 3540737049
Category :
Languages : en
Pages : 122
Book Description
Publisher: Springer Science & Business Media
ISBN: 3540737049
Category :
Languages : en
Pages : 122
Book Description
Partial Differential Equations and Spectral Theory
Author: Michael Demuth
Publisher: Springer Science & Business Media
ISBN: 303480024X
Category : Mathematics
Languages : en
Pages : 351
Book Description
This volume collects six articles on selected topics at the frontier between partial differential equations and spectral theory, written by leading specialists in their respective field. The articles focus on topics that are in the center of attention of current research, with original contributions from the authors. They are written in a clear expository style that makes them accessible to a broader audience. The articles contain a detailed introduction and discuss recent progress, provide additional motivation, and develop the necessary tools. Moreover, the authors share their views on future developments, hypotheses, and unsolved problems.
Publisher: Springer Science & Business Media
ISBN: 303480024X
Category : Mathematics
Languages : en
Pages : 351
Book Description
This volume collects six articles on selected topics at the frontier between partial differential equations and spectral theory, written by leading specialists in their respective field. The articles focus on topics that are in the center of attention of current research, with original contributions from the authors. They are written in a clear expository style that makes them accessible to a broader audience. The articles contain a detailed introduction and discuss recent progress, provide additional motivation, and develop the necessary tools. Moreover, the authors share their views on future developments, hypotheses, and unsolved problems.
Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs
Author: Alexander Grigor'yan
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110700859
Category : Mathematics
Languages : en
Pages : 337
Book Description
The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110700859
Category : Mathematics
Languages : en
Pages : 337
Book Description
The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.
Splitting Methods for Partial Differential Equations with Rough Solutions
Author: Helge Holden
Publisher: European Mathematical Society
ISBN: 9783037190784
Category : Mathematics
Languages : en
Pages : 238
Book Description
Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.
Publisher: European Mathematical Society
ISBN: 9783037190784
Category : Mathematics
Languages : en
Pages : 238
Book Description
Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.
Nonlinear Differential Equation Models
Author: Ansgar Jüngel
Publisher: Springer Science & Business Media
ISBN: 9783211209950
Category : Mathematics
Languages : en
Pages : 216
Book Description
The papers in this book originate from lectures which were held at the "Vienna Workshop on Nonlinear Models and Analysis" – May 20–24, 2002. They represent a cross-section of the research field Applied Nonlinear Analysis with emphasis on free boundaries, fully nonlinear partial differential equations, variational methods, quasilinear partial differential equations and nonlinear kinetic models.
Publisher: Springer Science & Business Media
ISBN: 9783211209950
Category : Mathematics
Languages : en
Pages : 216
Book Description
The papers in this book originate from lectures which were held at the "Vienna Workshop on Nonlinear Models and Analysis" – May 20–24, 2002. They represent a cross-section of the research field Applied Nonlinear Analysis with emphasis on free boundaries, fully nonlinear partial differential equations, variational methods, quasilinear partial differential equations and nonlinear kinetic models.
Partial Differential Equations
Author: Lawrence C. Evans
Publisher: American Mathematical Soc.
ISBN: 0821849743
Category : Mathematics
Languages : en
Pages : 778
Book Description
This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.
Publisher: American Mathematical Soc.
ISBN: 0821849743
Category : Mathematics
Languages : en
Pages : 778
Book Description
This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016
Author: Marco L. Bittencourt
Publisher: Springer
ISBN: 3319658700
Category : Mathematics
Languages : en
Pages : 681
Book Description
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Publisher: Springer
ISBN: 3319658700
Category : Mathematics
Languages : en
Pages : 681
Book Description
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Physics and Partial Differential Equations
Author: Tatsien Li
Publisher: SIAM
ISBN: 161197397X
Category : Mathematics
Languages : en
Pages : 555
Book Description
Physics and Partial Differential Equations, The Complete Set?bridges physics and applied mathematics in a manner that is easily accessible to readers with an undergraduate-level background in these disciplines. Each volume is also sold individually. Readers who are more familiar with mathematics than physics will discover the connection between various physical and mechanical disciplines and their related mathematical models, which are described by partial differential equations (PDEs). The authors establish the fundamental equations for fields such as?electrodynamics;?fluid dynamics, magnetohydrodynamics, and reacting fluid dynamics;?elastic, thermoelastic, and viscoelastic mechanics;?the kinetic theory of gases;?special relativity; and?quantum mechanics. Readers who are more familiar with physics than mathematics will benefit from in-depth explanations of how PDEs work as effective mathematical tools to more clearly express and present the basic concepts of physics. The book describes the mathematical structures and features of these PDEs, including?the types and basic characteristics of the equations,?the behavior of solutions, and?some commonly used approaches to solving PDEs.?
Publisher: SIAM
ISBN: 161197397X
Category : Mathematics
Languages : en
Pages : 555
Book Description
Physics and Partial Differential Equations, The Complete Set?bridges physics and applied mathematics in a manner that is easily accessible to readers with an undergraduate-level background in these disciplines. Each volume is also sold individually. Readers who are more familiar with mathematics than physics will discover the connection between various physical and mechanical disciplines and their related mathematical models, which are described by partial differential equations (PDEs). The authors establish the fundamental equations for fields such as?electrodynamics;?fluid dynamics, magnetohydrodynamics, and reacting fluid dynamics;?elastic, thermoelastic, and viscoelastic mechanics;?the kinetic theory of gases;?special relativity; and?quantum mechanics. Readers who are more familiar with physics than mathematics will benefit from in-depth explanations of how PDEs work as effective mathematical tools to more clearly express and present the basic concepts of physics. The book describes the mathematical structures and features of these PDEs, including?the types and basic characteristics of the equations,?the behavior of solutions, and?some commonly used approaches to solving PDEs.?
Entropy and Partial Differential Equations
Author: William Alan Day
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 130
Book Description
As well as recent research, this text contains current types of results about positive solutions of linear elliptic and parabolic equations. It should be of interest to mathematicians involved in thermodynamics, and to engineers and physicists, particularly those concerned with heat transfer.
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 130
Book Description
As well as recent research, this text contains current types of results about positive solutions of linear elliptic and parabolic equations. It should be of interest to mathematicians involved in thermodynamics, and to engineers and physicists, particularly those concerned with heat transfer.