Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules

Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules PDF Author: Jacob P. Covey
Publisher: Springer
ISBN: 3319981072
Category : Science
Languages : en
Pages : 257

Get Book Here

Book Description
This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy.

Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules

Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules PDF Author: Jacob P. Covey
Publisher: Springer
ISBN: 3319981072
Category : Science
Languages : en
Pages : 257

Get Book Here

Book Description
This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy.

Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices

Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices PDF Author: Michael L. Wall
Publisher: Springer
ISBN: 3319142526
Category : Science
Languages : en
Pages : 391

Get Book Here

Book Description
This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.

Cold Molecules

Cold Molecules PDF Author: Roman Krems
Publisher: CRC Press
ISBN: 1420059041
Category : Science
Languages : en
Pages : 756

Get Book Here

Book Description
The First Book on Ultracold MoleculesCold molecules offer intriguing properties on which new operational principles can be based (e.g., quantum computing) or that may allow researchers to study a qualitatively new behavior of matter (e.g., Bose-Einstein condensates structured by the electric dipole interaction). This interdisciplinary book discusse

Manipulating Quantum Systems

Manipulating Quantum Systems PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309499542
Category : Science
Languages : en
Pages : 315

Get Book Here

Book Description
The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Cold Chemistry

Cold Chemistry PDF Author: Olivier Dulieu
Publisher: Royal Society of Chemistry
ISBN: 1788013557
Category : Science
Languages : en
Pages : 692

Get Book Here

Book Description
Recent years have seen tremendous progress in research on cold and controlled molecular collisions, both in theory and in experiment. The advent of techniques to prepare cold and ultracold molecules and ions, to store them in optical lattices or in charged quasicristalline structures, and to use them in crossed or merged beam experiments have opened many new possibilities to study the most fundamental aspects of molecular interactions. At the same time, theoretical work has made progress in tackling these problems and accurately describing quantum effects in complex systems, and in proposing viable options to control chemical reactions at ultralow energies. Through tutorials on both the theoretical and experimental aspects of research in cold and ultracold molecular collisions, this book provides advanced undergraduate students, graduate students and researchers with the foundations needed to understand this exciting field.

Molecular Beams in Physics and Chemistry

Molecular Beams in Physics and Chemistry PDF Author: Bretislav Friedrich
Publisher: Springer Nature
ISBN: 3030639630
Category : Science
Languages : en
Pages : 639

Get Book Here

Book Description
This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.

Rotational Spectroscopy of Diatomic Molecules

Rotational Spectroscopy of Diatomic Molecules PDF Author: John M. Brown
Publisher: Cambridge University Press
ISBN: 9780521530781
Category : Science
Languages : en
Pages : 1074

Get Book Here

Book Description
The definitive text on the rotational spectroscopy of diatomic molecules.

Quantum Phase Transitions in Cold Atoms and Low Temperature Solids

Quantum Phase Transitions in Cold Atoms and Low Temperature Solids PDF Author: Kaden Richard Alan Hazzard
Publisher: Springer Science & Business Media
ISBN: 1441981799
Category : Science
Languages : en
Pages : 239

Get Book Here

Book Description
The primary focus of this thesis is to theoretically describe nanokelvin experiments in cold atomic gases, which offer the potential to revolutionize our understanding of strongly correlated many-body systems. The thesis attacks major challenges of the field: it proposes and analyzes experimental protocols to create new and interesting states of matter and introduces theoretical techniques to describe probes of these states. The phenomena considered include the fractional quantum Hall effect, spectroscopy of strongly correlated states, and quantum criticality, among others. The thesis also clarifies experiments on disordered quantum solids, which display a variety of exotic phenomena and are candidates to exhibit so-called "supersolidity." It collects experimental results and constrains their interpretation through theoretical considerations. This Doctoral Thesis has been accepted by Cornell University, Ithaca, USA.

Molecules in Electromagnetic Fields

Molecules in Electromagnetic Fields PDF Author: Roman V. Krems
Publisher: John Wiley & Sons
ISBN: 1118173619
Category : Science
Languages : en
Pages : 384

Get Book Here

Book Description
A tutorial for calculating the response of molecules to electric and magnetic fields with examples from research in ultracold physics, controlled chemistry, and molecular collisions in fields Molecules in Electromagnetic Fields is intended to serve as a tutorial for students beginning research, theoretical or experimental, in an area related to molecular physics. The author—a noted expert in the field—offers a systematic discussion of the effects of static and dynamic electric and magnetic fields on the rotational, fine, and hyperfine structure of molecules. The book illustrates how the concepts developed in ultracold physics research have led to what may be the beginning of controlled chemistry in the fully quantum regime. Offering a glimpse of the current state of the art research, this book suggests future research avenues for ultracold chemistry. The text describes theories needed to understand recent exciting developments in the research on trapping molecules, guiding molecular beams, laser control of molecular rotations, and external field control of microscopic intermolecular interactions. In addition, the author presents the description of scattering theory for molecules in electromagnetic fields and offers practical advice for students working on various aspects of molecular interactions. This important text: Offers information on theeffects of electromagnetic fields on the structure of molecular energy levels Includes thorough descriptions of the most useful theories for ultracold molecule researchers Presents a wealth of illustrative examples from recent experimental and theoretical work Contains helpful exercises that help to reinforce concepts presented throughout text Written for senior undergraduate and graduate students, professors, researchers, physicists, physical chemists, and chemical physicists, Molecules in Electromagnetic Fields is an interdisciplinary text describing theories and examples from the core of contemporary molecular physics.

Operative Gynecologic Endoscopy

Operative Gynecologic Endoscopy PDF Author: Joseph Sanfilippo
Publisher: Springer Science & Business Media
ISBN: 9780387944678
Category : Medical
Languages : en
Pages : 570

Get Book Here

Book Description
Operative Gynecologic Endoscopy, Second Edition is completely revised and expanded with 17 new chapters that provide, step-by-step, the latest operative techniques for both laparoscopic AND hysteroscopic procedures. New and updated chapters include: - laparoscopic assisted vaginal hysterectomy - vaginal prolapse and bladder suspension - ectopic pregnancy - tubal reconstructive surgery - assisted reproductive technologies - lymphadenectomy and urologic procedures - operative hysteroscopy. In addition, this volume includes comprehensive chapters on instrumentation, photo documentation, anesthesia, operating room personnel, credentialing, and legal issues. More than 350 superb illustrations - with many in full color - complement and clarify the operative techniques. For every surgeon and resident performing gynecologic procedures, this is the definitive, most up-to-date text on gynecologic endoscopy.