Energy Methods for Free Boundary Problems

Energy Methods for Free Boundary Problems PDF Author: S.N. Antontsev
Publisher: Springer Science & Business Media
ISBN: 1461200911
Category : Technology & Engineering
Languages : en
Pages : 338

Get Book Here

Book Description
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ford 1974, Pavia 1979, Durham 1978, Montecatini 1981, Maubuisson 1984, Irsee 1987, Montreal 1990, Toledo 1993, Zakopane 1995, Crete 1997, Chiba 1999). From the proceedings of these meetings, we can learn about the different kinds of mathematical areas that fall within the scope of free boundary problems. It is worth mentioning that the European Science Foundation supported a vast research project on free boundary problems from 1993 until 1999. The recent creation of the specialized journal Interfaces and Free Boundaries: Modeling, Analysis and Computation gives us an idea of the vitality of the subject and its present state of development. This book is a result of collaboration among the authors over the last 15 years.

Energy Methods for Free Boundary Problems

Energy Methods for Free Boundary Problems PDF Author: S.N. Antontsev
Publisher: Springer Science & Business Media
ISBN: 1461200911
Category : Technology & Engineering
Languages : en
Pages : 338

Get Book Here

Book Description
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ford 1974, Pavia 1979, Durham 1978, Montecatini 1981, Maubuisson 1984, Irsee 1987, Montreal 1990, Toledo 1993, Zakopane 1995, Crete 1997, Chiba 1999). From the proceedings of these meetings, we can learn about the different kinds of mathematical areas that fall within the scope of free boundary problems. It is worth mentioning that the European Science Foundation supported a vast research project on free boundary problems from 1993 until 1999. The recent creation of the specialized journal Interfaces and Free Boundaries: Modeling, Analysis and Computation gives us an idea of the vitality of the subject and its present state of development. This book is a result of collaboration among the authors over the last 15 years.

Energy Methods for Free Boundary Problems

Energy Methods for Free Boundary Problems PDF Author: S.N. Antontsev
Publisher: Springer Science & Business Media
ISBN: 9780817641238
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ford 1974, Pavia 1979, Durham 1978, Montecatini 1981, Maubuisson 1984, Irsee 1987, Montreal 1990, Toledo 1993, Zakopane 1995, Crete 1997, Chiba 1999). From the proceedings of these meetings, we can learn about the different kinds of mathematical areas that fall within the scope of free boundary problems. It is worth mentioning that the European Science Foundation supported a vast research project on free boundary problems from 1993 until 1999. The recent creation of the specialized journal Interfaces and Free Boundaries: Modeling, Analysis and Computation gives us an idea of the vitality of the subject and its present state of development. This book is a result of collaboration among the authors over the last 15 years.

Free Boundary Problems in Continuum Mechanics

Free Boundary Problems in Continuum Mechanics PDF Author: S.N. Antontsev
Publisher: Birkhäuser
ISBN: 3034886276
Category : Science
Languages : en
Pages : 348

Get Book Here

Book Description
Progress in different fields of mechanics, such as filtra tion theory, elastic-plastic problems, crystallization pro cesses, internal and surface waves, etc., is governed to a great extent by the advances in the study of free boundary problems for nonlinear partial differential equations. Free boundary problems form a scientific area which attracts attention of many specialists in mathematics and mechanics. Increasing interest in the field has given rise to the "International Conferences on Free Boundary Problems and Their Applications" which have convened, since the 1980s, in such countries as England, the United states, Italy, France and Germany. This book comprises the papers presented at the Interna tional Conference "Free Boundary Problems in Continuum Mechanics", organized by the Lavrentyev Institute of Hydrodynamics, Russian Academy of Sciences, July 15-19, 1991, Novosibirsk, Russia. The scientific committee consisted of: Co-chairmen: K.-H. Hoffmann, L.V. Ovsiannikov S. Antontsev (Russia) J. Ockendon (UK) M. Fremond (France) L. Ovsiannikov (Russia) A. Friedman (USA) S. Pokhozhaev (Russia) K.-H. Hoffmann (Germany) M. Primicerio (Italy) A. Khludnev (Russia) V. Pukhnachov (Russia) V. Monakhov (Russia) Yu. Shokin (Russia) V. Teshukov (Russia) Our thanks are due to the members of the Scientific Com mittee, all authors, and participants for contributing to the success of the Conference. We would like to express special appreciation to N. Makarenko, J. Mal'tseva and T. Savelieva, Lavrentyev Institute of Hydrodynamics, for their help in preparing this book for publication

Numerical Methods for Free Boundary Problems

Numerical Methods for Free Boundary Problems PDF Author: VEITTAANMÄKI
Publisher: Birkhäuser
ISBN: 3034857152
Category : Science
Languages : en
Pages : 431

Get Book Here

Book Description
About 80 participants from 16 countries attended the Conference on Numerical Methods for Free Boundary Problems, held at the University of Jyviiskylii, Finland, July 23-27, 1990. The main purpose of this conference was to provide up-to-date information on important directions of research in the field of free boundary problems and their numerical solutions. The contributions contained in this volume cover the lectures given in the conference. The invited lectures were given by H.W. Alt, V. Barbu, K-H. Hoffmann, H. Mittelmann and V. Rivkind. In his lecture H.W. Alt considered a mathematical model and existence theory for non-isothermal phase separations in binary systems. The lecture of V. Barbu was on the approximate solvability of the inverse one phase Stefan problem. K-H. Hoff mann gave an up-to-date survey of several directions in free boundary problems and listed several applications, but the material of his lecture is not included in this proceedings. H.D. Mittelmann handled the stability of thermo capillary convection in float-zone crystal growth. V. Rivkind considered numerical methods for solving coupled Navier-Stokes and Stefan equations. Besides of those invited lectures mentioned above there were 37 contributed papers presented. We shall briefly outline the topics of the contributed papers: Stefan like problems. Modelling, existence and uniqueness.

Mathematical Modeling

Mathematical Modeling PDF Author: Christof Eck
Publisher: Springer
ISBN: 3319551612
Category : Mathematics
Languages : en
Pages : 519

Get Book Here

Book Description
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

Energy Methods in Continuum Mechanics

Energy Methods in Continuum Mechanics PDF Author: S.N. Antontsev
Publisher: Springer Science & Business Media
ISBN: 9400903375
Category : Science
Languages : en
Pages : 180

Get Book Here

Book Description
This volume contains the proceedings of the Workshop Energy Methods for Free Boundary Problems in Continuum Mechanics, held in Oviedo, Spain, from March 21 to March 23, 1994. It is well known that the conservation laws and the constitutive equations of Continuum Mechanics lead to complicated coupled systems of partial differential equations to which, as a rule, one fails to apply the techniques usually employed in the studies of scalar uncoupled equations such as, for instance, the maximum principle. The study of the qualitative behaviour of solutions of the systems re quires different techniques, among others, the so called, Energy Methods where the properties of some integral of a nonnegative function of one or several unknowns allow one to arrive at important conclusions on the envolved unknowns. This vol ume presents the state of the art in such a technique. A special attention is paid to the class of Free Boundary Problems. The organizers are pleased to thank the European Science Foundation (Pro gram on Mathematical treatment of free boundary problems), the DGICYT (Spain), the FICYT (Principado de Asturias, Spain) and the Universities of Oviedo and Complutense de Madrid for their generous financial support. Finally, we wish to thank Kluwer Academic Publishers for the facilities received for the publication of these Proceedings.

Free Boundary Problems, Theory and Applications

Free Boundary Problems, Theory and Applications PDF Author: Marek Niezgodka
Publisher: CRC Press
ISBN: 9780582305939
Category : Mathematics
Languages : en
Pages : 462

Get Book Here

Book Description
Addressing various aspects of nonlinear partial differential equations, this volume contains papers and lectures presented at the Congress on Free boundary Problems, Theory and Application held in Zakopane, Poland in 1995. Topics include existence, uniqueness, asymptotic behavior, and regularity of solutions and interfaces.

Regularity of Free Boundaries in Obstacle-Type Problems

Regularity of Free Boundaries in Obstacle-Type Problems PDF Author: Arshak Petrosyan
Publisher: American Mathematical Soc.
ISBN: 0821887947
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.

Free Boundary Problems

Free Boundary Problems PDF Author: Isabel Narra Figueiredo
Publisher: Springer Science & Business Media
ISBN: 3764377194
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
This book collects refereed lectures and communications presented at the Free Boundary Problems Conference (FBP2005). These discuss the mathematics of a broad class of models and problems involving nonlinear partial differential equations arising in physics, engineering, biology and finance. Among other topics, the talks considered free boundary problems in biomedicine, in porous media, in thermodynamic modeling, in fluid mechanics, in image processing, in financial mathematics or in computations for inter-scale problems.

Nonlocal Diffusion and Applications

Nonlocal Diffusion and Applications PDF Author: Claudia Bucur
Publisher: Springer
ISBN: 3319287397
Category : Mathematics
Languages : en
Pages : 165

Get Book Here

Book Description
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.