Author: Eva Pavarini
Publisher: Forschungszentrum Jülich
ISBN: 3893368841
Category :
Languages : en
Pages : 562
Book Description
Emergent Phenomena in Correlated Matter
Author: Eva Pavarini
Publisher: Forschungszentrum Jülich
ISBN: 3893368841
Category :
Languages : en
Pages : 562
Book Description
Publisher: Forschungszentrum Jülich
ISBN: 3893368841
Category :
Languages : en
Pages : 562
Book Description
Condensed-Matter and Materials Physics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309063493
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
This book identifies opportunities, priorities, and challenges for the field of condensed-matter and materials physics. It highlights exciting recent scientific and technological developments and their societal impact and identifies outstanding questions for future research. Topics range from the science of modern technology to new materials and structures, novel quantum phenomena, nonequilibrium physics, soft condensed matter, and new experimental and computational tools. The book also addresses structural challenges for the field, including nurturing its intellectual vitality, maintaining a healthy mixture of large and small research facilities, improving the field's integration with other disciplines, and developing new ways for scientists in academia, government laboratories, and industry to work together. It will be of interest to scientists, educators, students, and policymakers.
Publisher: National Academies Press
ISBN: 0309063493
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
This book identifies opportunities, priorities, and challenges for the field of condensed-matter and materials physics. It highlights exciting recent scientific and technological developments and their societal impact and identifies outstanding questions for future research. Topics range from the science of modern technology to new materials and structures, novel quantum phenomena, nonequilibrium physics, soft condensed matter, and new experimental and computational tools. The book also addresses structural challenges for the field, including nurturing its intellectual vitality, maintaining a healthy mixture of large and small research facilities, improving the field's integration with other disciplines, and developing new ways for scientists in academia, government laboratories, and industry to work together. It will be of interest to scientists, educators, students, and policymakers.
A Franciscan Theological – Metaphysical Foundation of Emergence
Author: Alessandro Mantini
Publisher: Springer Nature
ISBN: 303172609X
Category :
Languages : en
Pages : 333
Book Description
Publisher: Springer Nature
ISBN: 303172609X
Category :
Languages : en
Pages : 333
Book Description
Condensed-Matter and Materials Physics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309109698
Category : Science
Languages : en
Pages : 285
Book Description
The development of transistors, the integrated circuit, liquid-crystal displays, and even DVD players can be traced back to fundamental research pioneered in the field of condensed-matter and materials physics (CMPP). The United States has been a leader in the field, but that status is now in jeopardy. Condensed-Matter and Materials Physics, part of the Physics 2010 decadal survey project, assesses the present state of the field in the United States, examines possible directions for the 21st century, offers a set of scientific challenges for American researchers to tackle, and makes recommendations for effective spending of federal funds. This book maintains that the field of CMPP is certain to be principle to both scientific and economic advances over the next decade and the lack of an achievable plan would leave the United States behind. This book's discussion of the intellectual and technological challenges of the coming decade centers around six grand challenges concerning energy demand, the physics of life, information technology, nanotechnology, complex phenomena, and behavior far from equilibrium. Policy makers, university administrators, industry research and development executives dependent upon developments in CMPP, and scientists working in the field will find this book of interest.
Publisher: National Academies Press
ISBN: 0309109698
Category : Science
Languages : en
Pages : 285
Book Description
The development of transistors, the integrated circuit, liquid-crystal displays, and even DVD players can be traced back to fundamental research pioneered in the field of condensed-matter and materials physics (CMPP). The United States has been a leader in the field, but that status is now in jeopardy. Condensed-Matter and Materials Physics, part of the Physics 2010 decadal survey project, assesses the present state of the field in the United States, examines possible directions for the 21st century, offers a set of scientific challenges for American researchers to tackle, and makes recommendations for effective spending of federal funds. This book maintains that the field of CMPP is certain to be principle to both scientific and economic advances over the next decade and the lack of an achievable plan would leave the United States behind. This book's discussion of the intellectual and technological challenges of the coming decade centers around six grand challenges concerning energy demand, the physics of life, information technology, nanotechnology, complex phenomena, and behavior far from equilibrium. Policy makers, university administrators, industry research and development executives dependent upon developments in CMPP, and scientists working in the field will find this book of interest.
Manipulating Quantum Systems
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309499542
Category : Science
Languages : en
Pages : 315
Book Description
The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.
Publisher: National Academies Press
ISBN: 0309499542
Category : Science
Languages : en
Pages : 315
Book Description
The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.
Cyber-Physical Systems of Systems
Author: Andrea Bondavalli
Publisher: Springer
ISBN: 3319475908
Category : Computers
Languages : en
Pages : 270
Book Description
This book is open access under a CC BY 4.0 license. Technical Systems-of-Systems (SoS) – in the form of networked, independent constituent computing systems temporarily collaborating to achieve a well-defined objective – form the backbone of most of today’s infrastructure. The energy grid, most transportation systems, the global banking industry, the water-supply system, the military equipment, many embedded systems, and a great number more, strongly depend on systems-of-systems. The correct operation and continuous availability of these underlying systems-of-systems are fundamental for the functioning of our modern society. The 8 papers presented in this book document the main insights on Cyber-Physical System of Systems (CPSoSs) that were gained during the work in the FP7-610535 European Research Project AMADEOS (acronym for Architecture for Multi-criticality Agile Dependable Evolutionary Open System-of-Systems). It is the objective of this book to present, in a single consistent body, the foundational concepts and their relationships. These form a conceptual basis for the description and understanding of SoSs and go deeper in what we consider the characterizing and distinguishing elements of SoSs: time, emergence, evolution and dynamicity.
Publisher: Springer
ISBN: 3319475908
Category : Computers
Languages : en
Pages : 270
Book Description
This book is open access under a CC BY 4.0 license. Technical Systems-of-Systems (SoS) – in the form of networked, independent constituent computing systems temporarily collaborating to achieve a well-defined objective – form the backbone of most of today’s infrastructure. The energy grid, most transportation systems, the global banking industry, the water-supply system, the military equipment, many embedded systems, and a great number more, strongly depend on systems-of-systems. The correct operation and continuous availability of these underlying systems-of-systems are fundamental for the functioning of our modern society. The 8 papers presented in this book document the main insights on Cyber-Physical System of Systems (CPSoSs) that were gained during the work in the FP7-610535 European Research Project AMADEOS (acronym for Architecture for Multi-criticality Agile Dependable Evolutionary Open System-of-Systems). It is the objective of this book to present, in a single consistent body, the foundational concepts and their relationships. These form a conceptual basis for the description and understanding of SoSs and go deeper in what we consider the characterizing and distinguishing elements of SoSs: time, emergence, evolution and dynamicity.
Quantum Monte Carlo Methods
Author: James Gubernatis
Publisher: Cambridge University Press
ISBN: 1107006422
Category : Computers
Languages : en
Pages : 503
Book Description
The first textbook to provide a pedagogical examination of the major algorithms used in quantum Monte Carlo simulations.
Publisher: Cambridge University Press
ISBN: 1107006422
Category : Computers
Languages : en
Pages : 503
Book Description
The first textbook to provide a pedagogical examination of the major algorithms used in quantum Monte Carlo simulations.
Many-Body Quantum Theory in Condensed Matter Physics
Author: Henrik Bruus
Publisher: Oxford University Press
ISBN: 0198566336
Category : Science
Languages : en
Pages : 458
Book Description
The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Publisher: Oxford University Press
ISBN: 0198566336
Category : Science
Languages : en
Pages : 458
Book Description
The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Variational Methods in Molecular Modeling
Author: Jianzhong Wu
Publisher: Springer
ISBN: 9811025029
Category : Science
Languages : en
Pages : 331
Book Description
This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors. All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical understanding rather than on rigorous mathematical derivations, the content is accessible to graduate students and researchers in the broad areas of materials science and engineering, chemistry, chemical and biomolecular engineering, applied mathematics, condensed-matter physics, without specific training in theoretical physics or calculus of variations.
Publisher: Springer
ISBN: 9811025029
Category : Science
Languages : en
Pages : 331
Book Description
This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors. All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical understanding rather than on rigorous mathematical derivations, the content is accessible to graduate students and researchers in the broad areas of materials science and engineering, chemistry, chemical and biomolecular engineering, applied mathematics, condensed-matter physics, without specific training in theoretical physics or calculus of variations.
Conceptual Foundations of Materials
Author:
Publisher: Elsevier
ISBN: 0080464572
Category : Science
Languages : en
Pages : 245
Book Description
The goal of this Volume "Conceptual Foundations of Materials: A standard model for ground- and excited-state properties" is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is on foundations and concepts. The Sections are designed to offer a broad and comprehensive perspective of the field. They cover the basic aspects of modern electronic structure approaches and highlight their applications to the structural (ground state, vibrational, dynamic and thermodynamic, etc.) and electronic (spectroscopic, dielectric, magnetic, transport, etc.) properties of real materials including solids, clusters, liquids, and nanostructure materials. This framework also forms a basis for studies of emergent properties arising from low-energy electron correlations and interactions such as the quantum Hall effects, superconductivity, and other cooperative phenomena. Although some of the basics and models for solids were developed in the early part of the last century by figures such as Bloch, Pauli, Fermi, and Slater, the field of electronic structure theory went through a phenomenal growth during the past two decades, leading to new concepts, understandings, and predictive capabilities for determining the ground- and excited-state properties of real, complex materials from first principles. For example, theory can now be used to predict the existence and properties of materials not previously realized in nature or in the laboratory. Computer experiments can be performed to examine the behavior of individual atoms in a particular process, to analyze the importance of different mechanisms, or just to see what happen if one varies the interactions and parameters in the simulation. Also, with ab initio calculations, one can determine from first principles important interaction parameters which are needed in model studies of complex processes or highly correlated systems. Each time a new material or a novel form of a material is discovered, electronic structure theory inevitably plays a fundamental role in unraveling its properties. - Provides the foundations of the field of condensed matter physics - An excellent supplementary text for classes on condensed matter physics/solid state physics - Volume covers current work at the forefront - Presentations are accessible to nonspecialists, with focus on underlying fundamentals
Publisher: Elsevier
ISBN: 0080464572
Category : Science
Languages : en
Pages : 245
Book Description
The goal of this Volume "Conceptual Foundations of Materials: A standard model for ground- and excited-state properties" is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is on foundations and concepts. The Sections are designed to offer a broad and comprehensive perspective of the field. They cover the basic aspects of modern electronic structure approaches and highlight their applications to the structural (ground state, vibrational, dynamic and thermodynamic, etc.) and electronic (spectroscopic, dielectric, magnetic, transport, etc.) properties of real materials including solids, clusters, liquids, and nanostructure materials. This framework also forms a basis for studies of emergent properties arising from low-energy electron correlations and interactions such as the quantum Hall effects, superconductivity, and other cooperative phenomena. Although some of the basics and models for solids were developed in the early part of the last century by figures such as Bloch, Pauli, Fermi, and Slater, the field of electronic structure theory went through a phenomenal growth during the past two decades, leading to new concepts, understandings, and predictive capabilities for determining the ground- and excited-state properties of real, complex materials from first principles. For example, theory can now be used to predict the existence and properties of materials not previously realized in nature or in the laboratory. Computer experiments can be performed to examine the behavior of individual atoms in a particular process, to analyze the importance of different mechanisms, or just to see what happen if one varies the interactions and parameters in the simulation. Also, with ab initio calculations, one can determine from first principles important interaction parameters which are needed in model studies of complex processes or highly correlated systems. Each time a new material or a novel form of a material is discovered, electronic structure theory inevitably plays a fundamental role in unraveling its properties. - Provides the foundations of the field of condensed matter physics - An excellent supplementary text for classes on condensed matter physics/solid state physics - Volume covers current work at the forefront - Presentations are accessible to nonspecialists, with focus on underlying fundamentals